1. Fabbro, V., "Apparent radar cross section of a large target illuminated by a surface wave above the sea," Progress In Electromagnetics Research, Vol. 50, 41-60, 2005.
doi:10.2528/PIER04050502 Google Scholar
2. Luo, W., M. Zhang, Y.-W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
doi:10.2528/PIERM09050103 Google Scholar
3. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101 Google Scholar
4. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501 Google Scholar
5. Bausssard, A., M. Rochdi, and A. Khenchaf, "PO/mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005 Google Scholar
6. Jin, Y. Q. and Z. X. Li, "Numerical simulation of radar surveillance for the ship target and oceanic clutters in two-dimensional model," Radio Science, Vol. 38, No. 3, 1045, 2003.
doi:10.1029/2002RS002692 Google Scholar
7. Yang, W., Z. Q. Zhao, C. H. Qi, W. Liu, and Z. P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011. Google Scholar
8. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401 Google Scholar
9. Ergul, O., "Parallel implementation of MLFMA for homogeneous objects with various material properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2011.
doi:10.2528/PIER11092501 Google Scholar
10. Colak, D., R. J. Burkholder, and E. H. Newman, "Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces," Microwave Opt. Technol. Lett., Vol. 49, No. 1, 241-247, 2007.
doi:10.1002/mop.22074 Google Scholar
11. Jeng, S. K., S. W. Lee, M. H. Shen, H. S. Yuan, and L. Pong, "High frequency scattering from a ship at sea," IEEE Trans. Antennas Propagat., Vol. 93, No. 5, 1436-1439, 1993. Google Scholar
12. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807 Google Scholar
13. Burkholder, R. J., P. Janpugdee, and D. Colak, Development of computational tools for predicting the radar scattering from targets on a rough sea surface, Technical Report, Ohio State University Electro Science Laboratory, Columbus, Ohio, 2001.
14. Cui, K., X. J. Xu, and S. Y. Mao, "EM scattering of a special kind of cavities with applications to RCS calculation of targets over sea surface," International Conference on Radar CIE, Vol. 1, No. 4, 2006. Google Scholar
15. Cui, K. and X. J. Xu, "EM scattering calculation for complex targets over sea surface," IEEE Trans. Antennas Propagat., Vol. 3A, No. 6, 101-104, 2005. Google Scholar
16. Xu, X. J., Y. Wang, and Y. Qin, "SAR image modeling of ships over sea surface," Proc. of SPIE, Vol. 6363, 2006. Google Scholar
17. Dong, C. Z., C. Wang, X. Wei, and H.-C. Yin, "EM scattering from complex targets above a slightly rough surface," PIERS Online,, Vol. 3, No. 5, 685-688, 2007.
doi:10.2529/PIERS061212012947 Google Scholar
18. Wright, J. W., "A new model for sea clutter," IEEE Trans. Antennas Propag., Vol. 16, 217-223, 1968.
doi:10.1109/TAP.1968.1139147 Google Scholar
19. Valenzuela, G. R., "Theories for the interaction of electromagnetic waves and oceanic waves: A review," Bound. Layer Met., Vol. 13, 61-85, 1978.
doi:10.1007/BF00913863 Google Scholar
20. Timchenko, A. I., "Model of electromagnetic wave scattering from sea surface with and without oil slicks," Progress In Electromagnetics Research, Vol. 37, 319-343, 2002.
doi:10.2528/PIER02080106 Google Scholar
21. Plant, W. J. and W. C. Keller, "Evidence of bragg scattering in microwave doppler spectra of sea return," J. Geophys. Res., Vol. 95, 16299-16310, 1990.
doi:10.1029/JC095iC09p16299 Google Scholar
22. Bass, F. G. and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, 418-442, Pergamon Press Oxford, 1979.
23. Fung, A. K. and K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE J. Oceanic Engineering, Vol. 7, No. 4, 166-176, 1982.
doi:10.1109/JOE.1982.1145535 Google Scholar
24. Zhao, Y.-W., M. Zhang, and H. Chen, "An efficient ocean sar raw signal simulation by employing fast fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064 Google Scholar
25. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901 Google Scholar
26. Hasselman, K., et al. "Theory of synthetic aperture radar ocean imaging: A MARSEN view," J. Geophys. Res., Vol. 90, 4659-4686, 1985.
doi:10.1029/JC090iC03p04659 Google Scholar
27. Andreas, A. B., A. Khenchaf, and A. Martin, "Bistatic radar imaging of the marine environment. Part I: Theoretical background," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3372-3383, 2007.
doi:10.1109/TGRS.2007.897436 Google Scholar
28. Chen, H., M. Zhang, D. Nie, and H.-C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface," Progress In Electromagnetics Research B, Vol. 18, 347-363, 2009.
doi:10.2528/PIERB09100508 Google Scholar
29. Ward, K. D., C. J. Baker, and S. Watts, "Maritime surveillance radar. Part 1: Radar scattering from the ocean surface," IEEE J. Oceanic Engineering, Vol. 7, No. 4, 166-176, 1982.
doi:10.1109/JOE.1982.1145535 Google Scholar
30. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propagat., Vol. 32, 252-258, 1984.
doi:10.1109/TAP.1984.1143303 Google Scholar
31. Wu, Z. S. and M. Zhang, "Improved equivalent edge currents by modified edge representation and their application in EM scattering," Acta Electronica Sinica, Vol. 26, No. 9, 1998. Google Scholar
32. Johnson, J. T., "A study of the four-path model for scattering from an object above a half space," Microwave Opt. Technol. Lett., Vol. 30, No. 6, 130-134, 2001.
doi:10.1002/mop.1242 Google Scholar
33. Shtager, E. A., "An estimation of sea surface influence on radar reflectivity of ships," IEEE Trans. Antennas Propagat., Vol. 47, No. 10, 1623-1627, 1999.
doi:10.1109/8.805908 Google Scholar
34. Plant, W. J., "Studies of backscattered sea return with a CW, dual-frequency, X-band radar," IEEE Trans. Antennas Propag., Vol. 25, 28-36, 1977.
doi:10.1109/TAP.1977.1141530 Google Scholar
35. Hasselmann, D. E., "Directional wave spectra observed during JONSWAP 1973," J. Phys. Oceanogr., Vol. 10, No. 7, 1264-1280, 1980.
doi:10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2 Google Scholar
36. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607 Google Scholar
37. Okino, N., Y. Kakazu, and M. Morimoto, "Extended depth-buffer algorithms for hidden-surface visualization," IEEE Computer Graphics and Applications, Vol. 4, No. 5, 79-88, 1984.
doi:10.1109/MCG.1984.276185 Google Scholar
38. Cox, C. and W. H. Munk, "Statistics of the sea surface derived from sun glitter," J. Marine Res., Vol. 13, 198-227, 1954. Google Scholar
39. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave remote sensing, Addison-Wesley Publishing Company, 1982.
40. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 25, No. 1, 1977.
doi:10.1109/TAP.1977.1141539 Google Scholar
41. Voronovich, A. G. and V. U. Zavorotni, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random and Complex Media, Vol. 11, No. 3, 247-269, 2001. Google Scholar
42. Awada, A., M. Y. Ayari, A. Khenchaf, and A. Coatanhay, "Bistatic scattering from an anisotropic sea surface: Numerical comparison between the first-order SSA and the TSM models," Waves in Random and Complex Media, Vol. 16, No. 3, 383-394, 2006.
doi:10.1080/17455030600844089 Google Scholar
43. Kozlov, A. I., L. P. Ligthart, and A. I. Logvin, Mathematical and Physical Modelling of Microwave Scattering and Polarimetric Remote Sensing --- Monitoring the Earth's Environment Using Polarimetric Radar: Formulation and Potential Applications, 43-65, Kluwer Academic Publishers, 2001.
44. Zhang, M., H. Chen, and H.-C. Yin, "Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: Theoretical model," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 7, 2011. Google Scholar
45. Plant, W. J., "Microwave sea return at moderate to high incidence angles," Waves in Random and Complex Media, Vol. 13, No. 4, 339-354, 2003. Google Scholar