1. Mehta, P., K. Chand, D. Narayanswamy, D. G. Beetner, R. Zoughi, and W. V. Stoecker, "Microwave reflectometry as a novel diagnostic tool for detection of skin cancers," IEEE Trans. Instrum. Meas., Vol. 55, No. 4, 1309-1316, Aug. 2006.
doi:10.1109/TIM.2006.876566 Google Scholar
2. Uribe, A. G., J. M. Hong, J. Zou, and L. V. Wang, "Micromachined oblique incidence reflectometry (OIR) probe for skin cancer detection," Proc. International Solid-State Sensors, Actuators and Microsystems Conference, 1099-1102, Lyon, France, Jun. 10--14, 2007.
3. Suntzeff, V. and C. Carruthers, "The water content in the epidermis of mice undergoing carcinogenesis by methylcholanthrene," Cancer Res., Vol. 6, 574-577, 1946. Google Scholar
4. Beetner, D. G., S. Kapoor, S. Manjunath, X. Zhou, and W. V. Stoecker, "Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance," IEEE Trans. Biomed. Eng., Vol. 50, No. 8, 1020-1025, Aug. 2003.
doi:10.1109/TBME.2003.814534 Google Scholar
5. Klemm, M., I. Z. Kovacs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 3884-3896, Dec. 2005.
doi:10.1109/TAP.2005.859906 Google Scholar
6. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ism bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604 Google Scholar
7. Chatterjee, I., M. J. Hagmann, and O.P. Gandhi, "Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions," Bioelectromagnetics, Vol. 1, No. 4, 363-377, 1980.
doi:10.1002/bem.2250010403 Google Scholar
8. Chatterjee, I., M. J. Hagmann, and O. P. Gandhi, "Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions," Bioelectromagnetics, Vol. 1, No. 4, 379-388, 1980.
doi:10.1002/bem.2250010404 Google Scholar
9. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601 Google Scholar
10. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207 Google Scholar
11. Caratelli, D. and R. Cicchetti, "A full-wave analysis of interdigital capacitors for planar integrated circuits," IEEE Trans. Magnetics, Vol. 39, No. 3, 1598-1601, May 2003.
doi:10.1109/TMAG.2003.810410 Google Scholar
12. Caratelli, D., A. Massaro, R. Cingolani, and A. Yarovoy, "Accurate time-domain modeling of reconfigurable antenna sensors for non-invasive melanoma skin cancer detection," IEEE Sens. J., 2011. Google Scholar
13. Dubois, M.-A. and P. Muralt, "Properties of aluminum nitride thin ¯lms for piezoelectric transducers and microwave filter applications," Appl. Phys. Lett., Vol. 74, No. 20, 3032-3034, 1999.
doi:10.1063/1.124055 Google Scholar
14. Caratelli, D., R. Cicchetti, G. Bit-Babik, and A. Faraone, "Circuit model and near-field behavior of a novel patch antenna for WWLAN applications," Microw. Opt. Technol. Lett., Vol. 49, No. 1, 97-100, Nov. 2006.
doi:10.1002/mop.22057 Google Scholar
15. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd Ed., Artech House, 2005.
16. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, No. 12, 1630-1639, Dec. 1996.
doi:10.1109/8.546249 Google Scholar
17. Chahat, N., M. Zhadobov, R. Augustine, and R. Sauleau, "Human skin permittivity models for millimetre-wave range," Electron. Lett., Vol. 47, No. 7, 427-428, 2011.
doi:10.1049/el.2011.0349 Google Scholar
18. Yaghjian, A. D., "Improved formulas for the Q of antennas with highly lossy dispersive materials," IEEE Antennas Wireless Propag. Lett., Vol. 5, 365-369, 2006.
doi:10.1109/LAWP.2006.881913 Google Scholar
19. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038 Google Scholar
20. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., Wiley, 1997.
21. Caratelli, D. and A. Yarovoy, "Unified time- and frequency-domain approach for accurate modeling of electromagnetic radiation processes in ultra-wideband antennas," IEEE Trans. Antennas Propagat., Vol. 58, No. 10, 3239-3255, Oct. 2010.
doi:10.1109/TAP.2010.2055800 Google Scholar
22. Romano, N., G. Prisco, and F. Soldovieri, "Design of a reconfigurable antenna for ground penetrating radar applications," Progress In Electromagnetics Research, Vol. 94, 1-18, 2009.
doi:10.2528/PIER09040802 Google Scholar
23. Caratelli, D., L. P. Ligthart, and A. Yarovoy, "Design and analysis of antennas for GPR applications," Tech. Rep. IRCTRS04107, Delft University of Technology, The Netherlands, Sep. 2007.
24. Caratelli, D. and A. Yarovoy, "Design and full-wave analysis of cavity-backed resistively loaded circular-end bow-tie antennas for GPR applications --- Part I," Appl. Comput. Electrom., Vol. 25, No. 10, 809-817, Oct. 2010. Google Scholar
25. Caratelli, D. and A. Yarovoy, "Design and full-wave analysis of cavity-backed resistively loaded circular-end bow-tie antennas for GPR applications --- Part II," Appl. Comput. Electrom., Vol. 25, No. 10, 818-829, Oct. 2010. Google Scholar
26. Pramudita, A. A., A. Kurniawan, A. B. Suksmono, and A. A. Lestari, "Effect of antenna dimensions on the antenna footprint in ground penetrating radar applications," IET Microw. Antennas Propag., Vol. 3, No. 8, 1271-1278, 2009.
doi:10.1049/iet-map.2008.0318 Google Scholar
27. Agilent Technologies, Inc., http://www.agilent.com/.