Vol. 125
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-06
Design and Full-Wave Analysis of Piezoelectric Micro-Needle Antenna Sensors for Enhanced Near-Field Detection of Skin Cancer
By
Progress In Electromagnetics Research, Vol. 125, 391-413, 2012
Abstract
The design and full-wave analysis of piezoelectric micro-needle antenna sensors for minimally invasive near-field detection of cancer-related anomalies of the skin is presented. To this end, an accurate locally conformal finite-difference time-domain procedure is adopted. In this way, an insightful understanding of the physical processes affecting the characteristics of the considered class of devices is achieved. This is important to improve the structure reliability, so optimizing the design cycle. In this regard, a suitable sensor layout is described, and discussed in detail. The major benefit of the proposed system stems from the potential for obtaining a superior performance in terms of input impedance matching and efficiency, in combination with an electronically tunable steering property of the near-field radiation intensity which can be profitably used to enhance the illumination and, hence, the localization of possible malignant lesions in the host medium. By using the detailed modeling approach, an extensive parametric study is carried out to analyze the effect produced on the sensor response by variations of the complex permittivity of the skin due to the presence of anomalous cells, and thus useful heuristic discrimination formulas for the evaluation of the exposure level to cancer risk are derived.
Citation
Diego Caratelli, Alexander Georgievic Yarovoy, Alessandro Massaro, and Aime Lay-Ekuakille, "Design and Full-Wave Analysis of Piezoelectric Micro-Needle Antenna Sensors for Enhanced Near-Field Detection of Skin Cancer," Progress In Electromagnetics Research, Vol. 125, 391-413, 2012.
doi:10.2528/PIER11101205
References

1. Mehta, P., K. Chand, D. Narayanswamy, D. G. Beetner, R. Zoughi, and W. V. Stoecker, "Microwave reflectometry as a novel diagnostic tool for detection of skin cancers," IEEE Trans. Instrum. Meas., Vol. 55, No. 4, 1309-1316, Aug. 2006.
doi:10.1109/TIM.2006.876566

2. Uribe, A. G., J. M. Hong, J. Zou, and L. V. Wang, "Micromachined oblique incidence reflectometry (OIR) probe for skin cancer detection," Proc. International Solid-State Sensors, Actuators and Microsystems Conference, 1099-1102, Lyon, France, Jun. 10--14, 2007.

3. Suntzeff, V. and C. Carruthers, "The water content in the epidermis of mice undergoing carcinogenesis by methylcholanthrene," Cancer Res., Vol. 6, 574-577, 1946.

4. Beetner, D. G., S. Kapoor, S. Manjunath, X. Zhou, and W. V. Stoecker, "Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance," IEEE Trans. Biomed. Eng., Vol. 50, No. 8, 1020-1025, Aug. 2003.
doi:10.1109/TBME.2003.814534

5. Klemm, M., I. Z. Kovacs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 3884-3896, Dec. 2005.
doi:10.1109/TAP.2005.859906

6. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ism bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604

7. Chatterjee, I., M. J. Hagmann, and O.P. Gandhi, "Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions," Bioelectromagnetics, Vol. 1, No. 4, 363-377, 1980.
doi:10.1002/bem.2250010403

8. Chatterjee, I., M. J. Hagmann, and O. P. Gandhi, "Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions," Bioelectromagnetics, Vol. 1, No. 4, 379-388, 1980.
doi:10.1002/bem.2250010404

9. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601

10. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207

11. Caratelli, D. and R. Cicchetti, "A full-wave analysis of interdigital capacitors for planar integrated circuits," IEEE Trans. Magnetics, Vol. 39, No. 3, 1598-1601, May 2003.
doi:10.1109/TMAG.2003.810410

12. Caratelli, D., A. Massaro, R. Cingolani, and A. Yarovoy, "Accurate time-domain modeling of reconfigurable antenna sensors for non-invasive melanoma skin cancer detection," IEEE Sens. J., 2011.

13. Dubois, M.-A. and P. Muralt, "Properties of aluminum nitride thin ¯lms for piezoelectric transducers and microwave filter applications," Appl. Phys. Lett., Vol. 74, No. 20, 3032-3034, 1999.
doi:10.1063/1.124055

14. Caratelli, D., R. Cicchetti, G. Bit-Babik, and A. Faraone, "Circuit model and near-field behavior of a novel patch antenna for WWLAN applications," Microw. Opt. Technol. Lett., Vol. 49, No. 1, 97-100, Nov. 2006.
doi:10.1002/mop.22057

15. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

16. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, No. 12, 1630-1639, Dec. 1996.
doi:10.1109/8.546249

17. Chahat, N., M. Zhadobov, R. Augustine, and R. Sauleau, "Human skin permittivity models for millimetre-wave range," Electron. Lett., Vol. 47, No. 7, 427-428, 2011.
doi:10.1049/el.2011.0349

18. Yaghjian, A. D., "Improved formulas for the Q of antennas with highly lossy dispersive materials," IEEE Antennas Wireless Propag. Lett., Vol. 5, 365-369, 2006.
doi:10.1109/LAWP.2006.881913

19. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038

20. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., Wiley, New York, 1997.

21. Caratelli, D. and A. Yarovoy, "Unified time- and frequency-domain approach for accurate modeling of electromagnetic radiation processes in ultra-wideband antennas," IEEE Trans. Antennas Propagat., Vol. 58, No. 10, 3239-3255, Oct. 2010.
doi:10.1109/TAP.2010.2055800

22. Romano, N., G. Prisco, and F. Soldovieri, "Design of a reconfigurable antenna for ground penetrating radar applications," Progress In Electromagnetics Research, Vol. 94, 1-18, 2009.
doi:10.2528/PIER09040802

23. Caratelli, D., L. P. Ligthart, and A. Yarovoy, "Design and analysis of antennas for GPR applications," Tech. Rep. IRCTRS04107, Delft University of Technology, The Netherlands, Sep. 2007.

24. Caratelli, D. and A. Yarovoy, "Design and full-wave analysis of cavity-backed resistively loaded circular-end bow-tie antennas for GPR applications --- Part I," Appl. Comput. Electrom., Vol. 25, No. 10, 809-817, Oct. 2010.

25. Caratelli, D. and A. Yarovoy, "Design and full-wave analysis of cavity-backed resistively loaded circular-end bow-tie antennas for GPR applications --- Part II," Appl. Comput. Electrom., Vol. 25, No. 10, 818-829, Oct. 2010.

26. Pramudita, A. A., A. Kurniawan, A. B. Suksmono, and A. A. Lestari, "Effect of antenna dimensions on the antenna footprint in ground penetrating radar applications," IET Microw. Antennas Propag., Vol. 3, No. 8, 1271-1278, 2009.
doi:10.1049/iet-map.2008.0318

27. Agilent Technologies, Inc., http://www.agilent.com/.