Vol. 122
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-05
Target Detection in Pulse-Train MIMO Radars Applying Ica Algorithms
By
Progress In Electromagnetics Research, Vol. 122, 413-435, 2012
Abstract
In this paper, the problem of target detection in co-located ``multi-input multi-output" (MIMO) radars is considered. A pulse-train signaling is assumed to be used in this system. As the doppler effect should be considered for the pulse-train signaling, we are confronted by a compound hypothesis testing problem, so in this paper a Generalized Likelihood Ratio (GLR) detector is derived. The high complexity of this detector makes us derive a new detector based on the theory of Independent Component Analysis (ICA). It is shown that the computational load of the ICA-based detector is much less than the GLR detector. It is also shown that the sensitivity of the ICA-based detector to the doppler effect is very low. According to this approach, an appropriate signal design method is presented, based on the separation performance of the ICA algorithms. It is shown that independent random sequences are proper signals in the sense of detection performance.
Citation
Majid Hatam, Abbas Sheikhi, and Mohammad Ali Masnadi-Shirazi, "Target Detection in Pulse-Train MIMO Radars Applying Ica Algorithms," Progress In Electromagnetics Research, Vol. 122, 413-435, 2012.
doi:10.2528/PIER11101206
References

1. Skolnik, M. I., Introduction to Radar Systems, 3rd Ed., McGraw-Hill, New York, 2001.

2. Haykin, S., J. Litva, and T. J. Shepherd, Radar Array Processing, Springer-Verlag, New York, 1993.

3. Fishler, E., A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "MIMO radar: An idea whose time has come," Proc. of the IEEE Radar Conf., Vol. 2, 71-78, Honolulu, Hawaii, Apr. 2004.

4. Haimovich, A., R. Blum, and L. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Process. Mag., Vol. 25, 116-129, Jan. 2008.
doi:10.1109/MSP.2008.4408448        Google Scholar

5. Fishler, E., A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela, "Spatial diversity in radars-models and detection performance," IEEE Transactions on Signal Processing, Vol. 54, 823-838, Mar. 2006.
doi:10.1109/TSP.2005.862813        Google Scholar

6. Lehmann, N., E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "Evaluation of transmit diversity in MIMO radar direction finding," IEEE Transactions on Signal Processing, Vol. 55, 2215-2225, May 2007.
doi:10.1109/TSP.2007.893220        Google Scholar

7. Li, J., P. Stoica, and X. Zheng, "Signal synthesis and receiver design for MIMO radar imaging," IEEE Transactions on Signal Processing, Vol. 56, 3959-3968, Aug. 2008.
doi:10.1109/TSP.2008.923197        Google Scholar

8. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Process. Mag., Vol. 24, 106114, Sep. 2007.        Google Scholar

9. Chen, C. Y. and P. Vaidyanathan, "MIMO radar space-time adaptive processing using prolate spheroidal wave functions," IEEE Transactions on Signal Processing, Vol. 56, 106-114, Sep. 2007.        Google Scholar

10. Bekkerman, I. and J. Tabrikian, "Target detection and localization using MIMO radars and sonars," IEEE Transactions on Signal Processing, Vol. 54, 3873-3883, Oct. 2006.
doi:10.1109/TSP.2006.879267        Google Scholar

11. Daum, F. and J. Huang, "MIMO radar: Snake oil or good idea," IEEE Aerosp. Electron. Syst. Mag., 8-12, May 2009.
doi:10.1109/MAES.2009.5109947        Google Scholar

12. Sheikhi, A. and A. Zamani, "Temporal coherent adaptive target detection for multi-input multi-output radars in clutter," IET Radar, Sonar & Navig., Vol. 2, 86-96, Jun. 2008.
doi:10.1049/iet-rsn:20070024        Google Scholar

13. De Maio, A. and M. Lops, "Design principles of MIMO radar detectors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, 886-897, Jul. 2007.
doi:10.1109/TAES.2007.4383581        Google Scholar

14. Huang, Y., P. Brennan, D. Patrick, I. Weller, P. Roberts, and K. Hughes, "FMCW based MIMO imaging radar for maritime navigation ," Progress In Electromagnetics Research, Vol. 115, 327-342, 2011.        Google Scholar

15. Chen, J., Z. Li, and C. Li, "A novel strategy for topside ionosphere sounder based on spaceborne MIMO radar with fdcd," Progress In Electromagnetics Research, Vol. 116, 381-393, 2011.        Google Scholar

16. Lim, S.-H., C. G. Hwang, S.-Y. Kim, and N.-H. Myung, "Shifting MIMO SAR system for high-resolution wide-swath imaging," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1168-1178, 2011.
doi:10.1163/156939311795762114        Google Scholar

17. Yang, Y. and R. S. Blum, "Minimax robust MIMO radar waveform design," IEEE Journal of Sel. Topics Signal Process., Vol. 1, 147-155, 2007.
doi:10.1109/JSTSP.2007.897056        Google Scholar

18. Fuhrmann, D. and G. Antonio, "Transmit beamforming for MIMO radar systems using signal cross-correlation," IEEE Trans. on Aerospace and Electronic Systems, Vol. 44, 171-176, Jan. 2008.
doi:10.1109/TAES.2008.4516997        Google Scholar

19. Qu, Y., G. Liao, S.-Q. Zhu, X.-Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306        Google Scholar

20. Sinha, N. B., R. N. Bera, and M. Mitra, "Digital array MIMO radar and its performance analysis," Progress In Electromagnetics Research C, Vol. 4, 25-41, 2008.        Google Scholar

21. Hassanien, A. and S. A. Vorobyov, "Phased-MIMO radar: A tradeoff between phased-array and MIMO radars," IEEE Transactions on Signal Processing, Vol. 58, 3137-3151, Jun. 2010.
doi:10.1109/TSP.2010.2043976        Google Scholar

22. Zhang, J., H. Wang, and X. Zhu, "Adaptive waveform design for separated transmit/receive ULA-MIMO radar," IEEE Transactions on Signal Processing, Vol. 58, 4936-4942, Sep. 2010.
doi:10.1109/TSP.2010.2052043        Google Scholar

23. Sen, S. and A. Nehorai, "OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking," IEEE Transactions on Signal Processing, Vol. 58, 3152-3162, Jun. 2010.
doi:10.1109/TSP.2010.2044834        Google Scholar

24. Li, H. and B. Himed, "Transmit subaperturing for MIMO radars with co-located antennas," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, 55-65, Feb. 2010.
doi:10.1109/JSTSP.2009.2038967        Google Scholar

25. Hatam, M., A. Sheikhi, and M. A. Masnadi-Shirazi, "A pulse-train mimo radar based on theory of independent component analysis," Submitted for Publication in the Iranian Journal of Science and Technology, Jun. 2011.        Google Scholar

26. Cui, G., L. Kong, and X. Yang, "Multiple-input multiple-output radar detectors design in non-gaussian clutter," IET Radar, Sonar & Navig., Vol. 4, 724-732, 2010.
doi:10.1049/iet-rsn.2009.0056        Google Scholar

27. Levenon, N., "Stepped-frequency pulse-train radar signal," IEE Proc. of Radar, Sonar and Navigation, Vol. 149, 297-309, Dec. 2002.
doi:10.1049/ip-rsn:20020432        Google Scholar

28. Iizuka, K., A. P. Freundorfer, et al. "Step-frequency radar," Journal of Applied physics, Vol. 56, 2572-2583, Nov. 1984.        Google Scholar

29. Mohseni, R., A. Sheikhi, and M. A. Masnadi-Shirazi, "Compression of multicarrier phase-coded radar signals based on discrete fourier transform (DFT)," Progress In Electromagnetics Research C, Vol. 5, 93-117, 2008.        Google Scholar

30. Gabriel, J. R. and S. M. Kay, "On the relationship between the GLRT and UMPI tests for the detection of signals with unknown parameters," IEEE Transactions on Signal Processing, Vol. 53, 4194-4203, Nov. 2005.        Google Scholar

31. Hyvärinen, A., J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley and Sons, New York, 2001.

32. Comon, P., "Independent components analysis: A new concept?," Special Issue on Higher-order Statistics, Signal Processing, Elsevier, Vol. 36, 287-314, Apr. 1994.        Google Scholar

33. Belouchrani, A., K. A. Meraim, J. F. Cardoso, and E. Moulines, "A blind source separation technique based on second order statistics," IEEE Transactions on Signal Process, Vol. 45, 434-444, 1997.
doi:10.1109/78.554307        Google Scholar

34. Hyvärinen, A. and E. Oja, "A fast fixed-point algorithm for independent component analysis," IEEE Transactions on Neural Computations, Vol. 9, 1483-1492, Oct. 1997.        Google Scholar

35. Cardoso, J. F. and A. Souloumiac, "Blind beamforming for non gaussian signals," IEE Proceedings F, Radar and Signal Processing, Vol. 140, 362-370, Dec. 1993.
doi:10.1049/ip-f-2.1993.0054        Google Scholar

36. Cardoso, J. F., "Jade algorithm for complex-valued signals as a matlab function," http://perso.telecom-paristech.fr/cardoso/Algo/Jade/jade.m.        Google Scholar

37. Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Vol. 1, Prentice-Hall, 1998.

38. Tichavský, P., Z. Koldovský, and E. Oja, "Performance analysis of the FastICA algorithm and Cramer-Rao bounds for linear independent component analysis," IEEE Transactions on Signal Processing, Vol. 54, 1189-1203, Apr. 2006.
doi:10.1109/TSP.2006.870561        Google Scholar

39. Koldovský, Z., P. Tichavský, and E. Oja, "Efficient variant of algorithm FastICA for independent component analysis attaining the Cramr-Rao lower bound," IEEE Transactions on Neural Networks, Vol. 17, 806-815, Sep. 2006.        Google Scholar

40. Holtz, O. and N. Shomron, "Computational complexity and numerical stability of linear problems," Proceedings of the 5th European Congress of Mathematics, 381-400, EMS Publishing House, 2010.        Google Scholar

41. Todros, K. and J. Tabrikian, "Fast approximate joint diagonalization of positive definite hermitian matrices," IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 3, 2007.

42. Papoulis, A. and S. Pillai, Probability, Random Variables and Stochastic Processes, 4th Ed., Mc-Graw-Hill, 2002.