1. Lim, S., J. Han, S. Kim, and N. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
doi:10.2528/PIER10061901 Google Scholar
2. Wei, S., X. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805 Google Scholar
3. Xu, W., P. Huang, and Y. Deng, "Multi-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011. Google Scholar
4. Wei, S., X. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011. Google Scholar
5. Liu, Q., W. Hong, W. Tan, and et al, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503 Google Scholar
6. Wu, J., J. Yang, Y. Huang, Z. Liu, and H. Yang, "A new look at the point target reference spectrum for bistatic SAR," Progress In Electromagnetics Research, Vol. 119, 363-379, 2011.
doi:10.2528/PIER11050704 Google Scholar
7. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703 Google Scholar
8. Dai, C. and X. Zhang, "Omega-k algorithm for bistatic SAR with arbitrary geometry configuration," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1564-1576, 2011.
doi:10.1163/156939311797164972 Google Scholar
9. Wang, R., O. Loffeld, Y. Neo, H. Nies, I. Walterscheid,T. Espeter, J. Klare, and J. Ender, "Focusing bistatic SAR data in airborne/stationary configuration," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 1, 452-465, 2010.
doi:10.1109/TGRS.2009.2027700 Google Scholar
10. Wong, F. W. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
doi:10.1109/36.921412 Google Scholar
11. Wang, X., D. Zhu, and Z. Zhu, "An implementation of bistatic PFA using chirp scaling," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 6, 745-753, 2010.
doi:10.1163/156939310791036430 Google Scholar
12. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011. Google Scholar
13. Mao, X., D. Zhu, L. Ding, and Z. Zhu, "Comparative study of RMA and PFA on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010.
doi:10.2528/PIER10090607 Google Scholar
14. Qiu, X., D. Hu, and C. Ding, "An improved NLCS algorithm with capability analysis for one-stationary BiSAR," IEEE Trans.Geosci. Remote Sens., Vol. 46, No. 10, Part 2, 3179-3186, 2008.
doi:10.1109/TGRS.2008.921569 Google Scholar
15. Papoulis, A., Systems and Transforms with Applications in Optics, McGraw-Hill, Now York, 1968.
16. Franceschetti, G. and R. Lanari, Synthetic Aperture Radar Processing, CRC, 1999.
17. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.
18. Qiu, X., D. Hu, and C. Ding, "Some reflections on bistatic SAR of forward-looking configuration," IEEE Geosci. Remote Sens. Letters, Vol. 5, No. 4, 735-739, 2008.
doi:10.1109/LGRS.2008.2004506 Google Scholar