Vol. 129
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-12
Four Dimensional Reconstruction Using Magnetic Induction Tomography: Experimental Study
By
Progress In Electromagnetics Research, Vol. 129, 17-32, 2012
Abstract
Magnetic Induction Tomography (MIT) is a relatively new and emerging type of tomography techniques that is able to map the conductivity distribution of an object. Its non-invasive and contactless features make it an attractive technique for many applications compared to the traditional contact electrode based electrical impedance tomography. Recently, MIT has become a promising monitoring technique in industrial process tomography, and the area of the research interest has moved from 2D to 3D because of the volumetric nature of electromagnetic field. Three dimensional MIT images provide more information on the conductivity distribution, especially in the axial direction. However, it has been reported that the reconstructed 3D images can be distorted when the imaging object is located at a less sensitive region. Although this distortion can be com- pensated by adjusting the regularisation criteria, this is not practical in real life applications as the prior information about the object's location is often unavailable. This paper presents a memory ecient 4D MIT algorithm which can maintain the image quality under the same regularisation circumstances. Instead of solving each set of measurement individually, the 4D algorithm takes advantage of the correlations between the image and its neighboring data frames to reconstruct 4D of conductivity movements. The 4D algorithm improves the image qualities by increasing the temporal resolution. It also overcomes some sensitivity issues of 3D MIT algorithms and can provide a smoother and stabler result. Several experimental results are presented for validating the propose algorithms.
Citation
Hsin-Yu Wei, and Manuchehr Soleimani, "Four Dimensional Reconstruction Using Magnetic Induction Tomography: Experimental Study," Progress In Electromagnetics Research, Vol. 129, 17-32, 2012.
doi:10.2528/PIER12032403
References

1. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 785-798, 2009.
doi:10.1163/156939309788019822

2. Peyton, A. J., Z. Z. Yu, S. Al-Zeibak, N. H. Saunders, and and A. R. Borges, "Electromagnetic imaging using mutual inductance tomography: Potential for process applications," Particle & Particle Systems Characterization, Vol. 12, No. 2, 68-74, Apr. 1995.
doi:10.1002/ppsc.19950120204

3. Ma, X., S. R. Higson, A. Lyons, and A. J. Peyton, "Development of a fast electromagnetic induction tomography system for metal process applications," Proc. 4th World Congress on Industrial Process Tomography,WCIPT4, 196-201, Aizu, Japan, Sep. 2005.

4. Ma, X., A. J. Peyton, S. R. Higson, A. Lyons, and S. J. Dickinson, "Hardware and software design for an electromagnetic induction tomography (EMT) system applied to high contrast metal process applications," Meas. Sci. Technol., Vol. 17, No. 1, 111-118, 2006.
doi:10.1088/0957-0233/17/1/018

5. Watson, S., R. J. Williams, W. A. Gough, and H. Griffths, "A magnetic induction tomography system for samples with conductivities less than 10 s.m-1," Meas. Sci. Technol., Vol. 19, 045501, 2008.

6. Scharfetter, H., R. Casanas, and J. Rosell, "Biological tissue characterization by magnetic induction spectroscopy (MIS):Requirements and limitations," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 7, 870-880, Jun. 2003.
doi:10.1109/TBME.2003.813533

7. Vauhkonen, M., M. Hamsch, and C. H. Igney, "A measurement system and image reconstruction in magnetic induction tomography," Physiol. Meas., Vol. 29, S445-S454, 2008.
doi:10.1088/0967-3334/29/6/S37

8. Merwa, R., K. Hollaus, P. Brunner, and H. Scharfetter, "Solution of the inverse problem of magnetic induction tomography (MIT)," Physiol. Meas., Vol. 26, S241-S250, 2005.
doi:10.1088/0967-3334/26/2/023

9. Watson, S., R. J. Williams, H. Gri±ths, W. Gough, and A. Morris, "Magnetic induction tomography: Phase versus vector-voltmeter measurement techniques," Physiol. Meas., Vol. 24, 555-564, 2003.
doi:10.1088/0967-3334/24/2/365

10. Korjenevsky, A. V. and V. A. Cherepenin, "Progress in realization of magnetic induction tomography," Annals of the New York Academy of Sciences, Vol. 873, 346-352, 1999.
doi:10.1111/j.1749-6632.1999.tb09482.x

11. Banasiak, R., Z. Ye, and M. Soleimani, "Improving three-dimensional electrical capacitance tomography imaging using approximation error model theory," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 411-421, 2012.

12. Solimene, R., A. Brancaccio, R. Di Napoli, and R. Pierri, "3D sliced tomographic inverse scattering experimental results," Progress In Electromagnetics Research, Vol. 105, 1-13, 2010.
doi:10.2528/PIER10050705

13. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

14. Soleimani, M., "Sensitivity maps in three-dimensional magnetic induction tomography," Insight, Vol. 48, No. 1, 39-44, Jan. 2006.
doi:10.1784/insi.2006.48.1.39

15. Soleimani, M., W. R. B. Lionheart, A. J. Peyton, X. Ma, and S. R. Higson, "A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data," IEEE Transactions on Magnetics, Vol. 42, 1560-1567, May 2006.
doi:10.1109/TMAG.2006.871255

16. Wei, H.-Y., L. Ma, and M. Soleimani, "Volumetric magnetic induction tomography," Meas. Sci. Technol., Vol. 23, No. 5, 055401, 2012.

17. Flores-Tapia, D., M. O'Halloran, and S. Pistorius, "A bimodal reconstruction method for breast cancer imaging," Progress In Electromagnetics Research, Vol. 118, 461-486, 2011.
doi:10.2528/PIER11050408

18. Liao, K.-F., X.-L. Zhang, and J. Shi, "Fast 3-D microwave imaging method based on subaperture approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
doi:10.2528/PIER12011106

19. Qi, Y., W. Tan, Y. Wang, W. Hong, and Y. Wu, "3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205

20. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704

21. Asimakis, N. P., I. S. Karanasiou, and N. K. Uzunoglu, "Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna," Progress In Electromagnetics Research, Vol. 117, 83-101, 2011.

22. Adler, A., T. Dai, and W. R. B. Lionheart, "Temporal image reconstruction in electrical impedance tomography," Physiol.Meas., Vol. 28, S1-S11, 2007.
doi:10.1088/0967-3334/28/7/S01

23. Soleimani, M., "Improving the temporal resolution of magnetic induction tomography for molten metal flow visualization," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 3, 553-557, 2010.
doi:10.1109/TIM.2009.2024704

24. Biro, O., "Edge element formulations of eddy current problems," Comput. Methods Appl. Mech. Engrg., Vol. 169, 391-405, 1999.
doi:10.1016/S0045-7825(98)00165-0

25. Biro, O. and J. Preis, "On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents," IEEE Transaction on Magnetics, Vol. 25, No. 4, 3145-1359, 1989.
doi:10.1109/20.34388

26. Kameari, A., "Regularization on ill-posed source terns in FEM computation using two magnetic vector potentials," IEEE Transaction on Magnetics, Vol. 40, No. 2, 1310-1313, 2004.
doi:10.1109/TMAG.2004.824712

27. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

28. Wei, H.-Y. and M. Soleimani, "Three dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513

29. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202