1. Bertoni, H. L., Radio Propagation for Modern Wireless Systems, Prentice-Hall, New Jersey, 2000.
2. Azevedo, J. A. R. and F. E. S. Santos, "An empirical propagation model for forest environments at tree trunk level," IEEE Trans. Antennas Propagat., Vol. 59, 2357-2367, 2011.
doi:10.1109/TAP.2011.2143664 Google Scholar
3. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Study of propagation loss prediction in forest environment," Progress In Electromagnetics Research, Vol. 17, 117-133, 2009.
doi:10.2528/PIERB09071901 Google Scholar
4. Gay-Fernandez, J. A., M. Garcia Sánchez, I. Cuinas, A. V. Alejos,J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806 Google Scholar
5. Schettino, D. N., F. J. S. Moreira, and C. G. Rego, "Effcient ray tracing for radio channel characterization of urban scenarios," IEEE Trans. Magn., Vol. 43, 1305-1308, 2007.
doi:10.1109/TMAG.2006.890976 Google Scholar
6. Pathak, P. H., "An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder," Radio Sci., Vol. 14, 419-435, 1979.
doi:10.1029/RS014i003p00419 Google Scholar
7. Pathak, P. H., W. D. Burnside, and R. J. Marhefka, "A uniform UTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propagat., Vol. 28, 609-622, 1980.
doi:10.1109/TAP.1980.1142396 Google Scholar
8. Pathak, P. H., "High-frequency techniques for antenna analysis," Proc. IEEE, Vol. 80, 44-65, 1992.
doi:10.1109/5.119566 Google Scholar
9. El-Sallabi, H. M. and P. Vainikainen, "Radio wave propagation in perpendicular streets of urban street grid for microcellular communications. Part I: channel modeling," Progress In Electromagnetics Research, Vol. 40, 229-254, 2003.
doi:10.2528/PIER02112502 Google Scholar
10. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Di®raction, Artech House, New York, 1990.
11. Li, Y. and H. Ling, "Numerical modeling and mechanism analysis of VHF wave propagation in forested environments using the equivalent slab model," Progress In Electromagnetics Research, Vol. 91, 17-34, 2009.
doi:10.2528/PIER09012306 Google Scholar
12. Li, Y. and H. Ling, "Investigation of wave propagation in a dielectric rod array: Toward the understanding of HF/VHF propagation in a forest," IEEE Trans. Antennas Propagat., Vol. 58, 4025-4032, 2010.
doi:10.1109/TAP.2010.2078456 Google Scholar
13. Koutitas, G. and C. Tzaras, "A UTD solution for multiple rounded surfaces," IEEE Trans. Antennas Propagat., Vol. 54, 1277-1283, 2006.
doi:10.1109/TAP.2006.872675 Google Scholar
14. Ghaddar, M., L. Talbi, T. A. Denidni, and A. Sebak, "A conducting cylinder for modeling human body presence in indoor propagation channel," IEEE Trans. Antennas Propagat., Vol. 55, 3099-3103, 2007.
doi:10.1109/TAP.2007.908563 Google Scholar
15. Phaebua, K., T. Lertwiriyaprapa, C. Phongcharoenpanich, and M. Krairiksh, "Path loss prediction in durian orchard using uniform geometrical theory of diffraction," Proceedings of IEEE AP-S Int. Symp., 4 pages, 2009. Google Scholar
16. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "A UTD for predicting fields of sources near or on thin planar positive/negative material discontinuities," Radio Sci., Vol. 42, RS6S18, 14 pages, 2007. Google Scholar
17. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "An approximate UTD ray solution for the radiation and scattering by antennas near a junction between two different thin planar material slab on ground plane," Progress In Electromagnetics Research, Vol. 102, 227-248, 2010.
doi:10.2528/PIER09111809 Google Scholar
18. Syed, H. H. and J. L. Volakis, "An asymptotic analysis of the plane wave scattering by a smooth convex impedance cylinder,", Report,Radiation Laboratory Department of Electrical Engineering and Computer Science, The University of Michigan Ann Arbor. Google Scholar
19. Syed, H. H. and J. L. Volakis, "High-frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions," Radio Sci., Vol. 26, 1305-1314, 1991.
doi:10.1029/91RS00999 Google Scholar
20. Phaebua, K., T. Lertwiriyaprapa, C. Phongcharoenpanich, and and P. H. Pathak, "A modified UTD solution for an impedance cylinder surface," Proceedings of the Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology International Co, 208-211, 2011. Google Scholar
21. Sim, Z. W., R. Shuttleworth, M. J. Alexander, and B. D. Grieve, "Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks," Progress In Electromagnetics Research, Vol. 105, 273-294, 2010.
doi:10.2528/PIER10052509 Google Scholar
22. Pearson, L. W., "A scheme for automatic computation of fock-type integrals," IEEE Trans. Antennas Propagat., Vol. 35, 1111-1118, 1987.
doi:10.1109/TAP.1987.1143985 Google Scholar
23. Rautio, J. C., "Reflection coeffcient analysis of the effect of ground on antenna patterns," IEEE Trans. Antennas Propagat., Vol. 29, 5-11, 1980. Google Scholar
24. Lertwiriyaprapa, T., K. Phaebua, C. Phongcharoenpanich, and and M. Krairiksh, "Application of UTD ray solution for characterization of propagation in Thai commercial orchard," Proceedings of Int. Conf. on Electromagn. in Adv. Appl., 176-179, 2010. Google Scholar
25. Lertwiriyaprapa, T., P. H. Pathak, K. Tap, and R. J. Burkholder, "Application of the complex source point method for analyzing the di®raction of an electromagnetic Gaussian beam by a curved wedge using UTD concepts," Proceedings of IEEE AP-S Int.Symp., 4 pages, 2004. Google Scholar
26. Felsen, L. B., "Complex source point solution of the field equations and their relation to the propagation and scattering of Gaussian beams," Symposia Mathematica, Vol. 18, 39-56, 1975. Google Scholar
27. Tap, K., "Complex source point beam expansions for some electro-magnetic radiation and scattering problems,", Ph.D. dissertation,The Ohio State University, Columbus, OH, 2007. Google Scholar
28. Tokgoz, C., "Asymptotic high frequency analysis of the surface fields of a source excited circular cylinder with an impedance boundary condition,", Ph.D. dissertation, The Ohio State University, Columbus, OH, 2002. Google Scholar
29. Sahin, H. and N. Ay, "Dielectric properties of hardwood species at microwave frequencies," Journal of Wood Sci., Vol. 50, 375-380, 2004. Google Scholar
30. Peyskens, E., M. de Pourcq, M. Stevens, and J. Schalck, "Dielectric properties of softwood species at microwave frequencies," Wood Sci. and Tech., Vol. 18, 267-280, 1984.
doi:10.1007/BF00353363 Google Scholar
31. Ford, L. H. and R. Oliver, "rimental investigation of the reflection and absorption of radiation of 9-cm. wavelength," Proc. Phys. Soc., Vol. 58, 256-280, 1945. Google Scholar
32. Kim, H. S. and R. M. Narayanan, "A new measurement technique for obtaining the complex relative permittivity of terrain surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 40, 1190-1194, 2002.
doi:10.1109/TGRS.2002.1010903 Google Scholar