Vol. 128
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-02
Path-Loss Prediction of Radio Wave Propagation in an Orchard by Using Modified UTD Method
By
Progress In Electromagnetics Research, Vol. 128, 347-363, 2012
Abstract
The proposed theoretical path-loss prediction procedure and measured results of radio wave propagation in an orchard environment are presented. The wireless sensor network (WSN) in a Durian orchard is primarily chosen to be an example of this study. The three-dimensional (3-D) modified uniform geometrical theory of diffraction (UTD) for curved impedance surface is employed for theoretical path-loss prediction in this paper. The orchard scenario is modeled by using canonical geometries such as a dielectric flat surface and cylindrical structures with an impedance surface to respectively represent ground and trees. Moreover, since the wireless sensor node is attached to the outside peel of a hanging durian fruit, the fruit partially acts as a wireless sensor node. Therefore, to obtain greater accuracy in the source radiation pattern, the Gaussian beam (GB) expansion via the CSP technique is used for source modeling. The path loss prediction from the proposed numerical procedure and the measured results are in good agreement. The proposed numerical procedure to calculate the path loss from actual scenario of the orchard is useful for network planning such as the pre-harvesting WSN system and other orchard scenarios.
Citation
Kittisak Phaebua, Chuwong Phongcharoenpanich, Monai Krairiksh, and Titipong Lertwiriyaprapa, "Path-Loss Prediction of Radio Wave Propagation in an Orchard by Using Modified UTD Method," Progress In Electromagnetics Research, Vol. 128, 347-363, 2012.
doi:10.2528/PIER12040106
References

1. Bertoni, H. L., Radio Propagation for Modern Wireless Systems, Prentice-Hall, New Jersey, 2000.

2. Azevedo, J. A. R. and F. E. S. Santos, "An empirical propagation model for forest environments at tree trunk level," IEEE Trans. Antennas Propagat., Vol. 59, 2357-2367, 2011.
doi:10.1109/TAP.2011.2143664

3. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Study of propagation loss prediction in forest environment," Progress In Electromagnetics Research, Vol. 17, 117-133, 2009.
doi:10.2528/PIERB09071901

4. Gay-Fernandez, J. A., M. Garcia Sánchez, I. Cuinas, A. V. Alejos,J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

5. Schettino, D. N., F. J. S. Moreira, and C. G. Rego, "Effcient ray tracing for radio channel characterization of urban scenarios," IEEE Trans. Magn., Vol. 43, 1305-1308, 2007.
doi:10.1109/TMAG.2006.890976

6. Pathak, P. H., "An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder," Radio Sci., Vol. 14, 419-435, 1979.
doi:10.1029/RS014i003p00419

7. Pathak, P. H., W. D. Burnside, and R. J. Marhefka, "A uniform UTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propagat., Vol. 28, 609-622, 1980.
doi:10.1109/TAP.1980.1142396

8. Pathak, P. H., "High-frequency techniques for antenna analysis," Proc. IEEE, Vol. 80, 44-65, 1992.
doi:10.1109/5.119566

9. El-Sallabi, H. M. and P. Vainikainen, "Radio wave propagation in perpendicular streets of urban street grid for microcellular communications. Part I: channel modeling," Progress In Electromagnetics Research, Vol. 40, 229-254, 2003.
doi:10.2528/PIER02112502

10. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Di®raction, Artech House, New York, 1990.

11. Li, Y. and H. Ling, "Numerical modeling and mechanism analysis of VHF wave propagation in forested environments using the equivalent slab model," Progress In Electromagnetics Research, Vol. 91, 17-34, 2009.
doi:10.2528/PIER09012306

12. Li, Y. and H. Ling, "Investigation of wave propagation in a dielectric rod array: Toward the understanding of HF/VHF propagation in a forest," IEEE Trans. Antennas Propagat., Vol. 58, 4025-4032, 2010.
doi:10.1109/TAP.2010.2078456

13. Koutitas, G. and C. Tzaras, "A UTD solution for multiple rounded surfaces," IEEE Trans. Antennas Propagat., Vol. 54, 1277-1283, 2006.
doi:10.1109/TAP.2006.872675

14. Ghaddar, M., L. Talbi, T. A. Denidni, and A. Sebak, "A conducting cylinder for modeling human body presence in indoor propagation channel," IEEE Trans. Antennas Propagat., Vol. 55, 3099-3103, 2007.
doi:10.1109/TAP.2007.908563

15. Phaebua, K., T. Lertwiriyaprapa, C. Phongcharoenpanich, and M. Krairiksh, "Path loss prediction in durian orchard using uniform geometrical theory of diffraction," Proceedings of IEEE AP-S Int. Symp., 4 pages, 2009.

16. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "A UTD for predicting fields of sources near or on thin planar positive/negative material discontinuities," Radio Sci., Vol. 42, RS6S18, 14 pages, 2007.

17. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "An approximate UTD ray solution for the radiation and scattering by antennas near a junction between two different thin planar material slab on ground plane," Progress In Electromagnetics Research, Vol. 102, 227-248, 2010.
doi:10.2528/PIER09111809

18. Syed, H. H. and J. L. Volakis, "An asymptotic analysis of the plane wave scattering by a smooth convex impedance cylinder,", Report,Radiation Laboratory Department of Electrical Engineering and Computer Science, The University of Michigan Ann Arbor.

19. Syed, H. H. and J. L. Volakis, "High-frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions," Radio Sci., Vol. 26, 1305-1314, 1991.
doi:10.1029/91RS00999

20. Phaebua, K., T. Lertwiriyaprapa, C. Phongcharoenpanich, and and P. H. Pathak, "A modified UTD solution for an impedance cylinder surface," Proceedings of the Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology International Co, 208-211, 2011.

21. Sim, Z. W., R. Shuttleworth, M. J. Alexander, and B. D. Grieve, "Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks," Progress In Electromagnetics Research, Vol. 105, 273-294, 2010.
doi:10.2528/PIER10052509

22. Pearson, L. W., "A scheme for automatic computation of fock-type integrals," IEEE Trans. Antennas Propagat., Vol. 35, 1111-1118, 1987.
doi:10.1109/TAP.1987.1143985

23. Rautio, J. C., "Reflection coeffcient analysis of the effect of ground on antenna patterns," IEEE Trans. Antennas Propagat., Vol. 29, 5-11, 1980.

24. Lertwiriyaprapa, T., K. Phaebua, C. Phongcharoenpanich, and and M. Krairiksh, "Application of UTD ray solution for characterization of propagation in Thai commercial orchard," Proceedings of Int. Conf. on Electromagn. in Adv. Appl., 176-179, 2010.

25. Lertwiriyaprapa, T., P. H. Pathak, K. Tap, and R. J. Burkholder, "Application of the complex source point method for analyzing the di®raction of an electromagnetic Gaussian beam by a curved wedge using UTD concepts," Proceedings of IEEE AP-S Int.Symp., 4 pages, 2004.

26. Felsen, L. B., "Complex source point solution of the field equations and their relation to the propagation and scattering of Gaussian beams," Symposia Mathematica, Vol. 18, 39-56, 1975.

27. Tap, K., "Complex source point beam expansions for some electro-magnetic radiation and scattering problems,", Ph.D. dissertation,The Ohio State University, Columbus, OH, 2007.

28. Tokgoz, C., "Asymptotic high frequency analysis of the surface fields of a source excited circular cylinder with an impedance boundary condition,", Ph.D. dissertation, The Ohio State University, Columbus, OH, 2002.

29. Sahin, H. and N. Ay, "Dielectric properties of hardwood species at microwave frequencies," Journal of Wood Sci., Vol. 50, 375-380, 2004.

30. Peyskens, E., M. de Pourcq, M. Stevens, and J. Schalck, "Dielectric properties of softwood species at microwave frequencies," Wood Sci. and Tech., Vol. 18, 267-280, 1984.
doi:10.1007/BF00353363

31. Ford, L. H. and R. Oliver, "rimental investigation of the reflection and absorption of radiation of 9-cm. wavelength," Proc. Phys. Soc., Vol. 58, 256-280, 1945.

32. Kim, H. S. and R. M. Narayanan, "A new measurement technique for obtaining the complex relative permittivity of terrain surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 40, 1190-1194, 2002.
doi:10.1109/TGRS.2002.1010903