1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.
doi:10.1002/0471723770
2. Wu, T. K., Frequency Selective Surfaces and Grid Arrays, Wiley, New York, 1995.
3. Monni, S., A. Neto, G. Gerini, F. Nennie, and A. Tijhuis, "Frequency-selective surface to prevent interference between radar and SATCOM antennas," IEEE Antennas Wireless Propag. Lett., Vol. 8, 220-223, 2009.
doi:10.1109/LAWP.2009.2013166 Google Scholar
4. Erdemli, Y. E., K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, "Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays," IEEE Trans. on Antennas and Propag., Vol. 50, No. 12, 1716-1724, 2002.
doi:10.1109/TAP.2002.807377 Google Scholar
5. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
6., Chen Y., S. Yang, and Z.-P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012. Google Scholar
7. Sung G., H., K. W. Sowerby, and A. G. Williamson, "Modeling a low-cost frequency selective wall for wireless-friendly indoor environments," IEEE Antennas Wireless Propag. Lett., Vol. 5, 311, 2006. Google Scholar
8. Barlevy, A. S. and Y. Rahmat-Samii, "On the electrical and numerical properties of high Q resonances in frequency selective surface," Progress In Electromagnetics Research, Vol. 22, 1-27, 1999.
doi:10.2528/PIER98101301 Google Scholar
9. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528 Google Scholar
10. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701 Google Scholar
11. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302 Google Scholar
12. De Cos, M. E., Y. Alvarez Lopez, R. C. Hadarig, and F. Las-Heras, "Flexible uniplanar artificial magnetic conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
doi:10.2528/PIER10061505 Google Scholar
13. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801 Google Scholar
14. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Trans. on Antennas and Propag., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699 Google Scholar
15. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement," IET Microwaves, Antennas Propag., Vol. 1, No. 1, 248-254, 2007.
doi:10.1049/iet-map:20050318 Google Scholar
16. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
17. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2998-3005, 2011.
doi:10.1109/TAP.2011.2158779 Google Scholar
18. Chang, T. K., R. J. Langley, and E. A. Parker, "Active frequency-selective surfaces," IEE Proceedings -- Microwaves, Antennas and Propagation, Vol. 143, No. 1, 62-66, 1996.
doi:10.1109/TAP.2009.2037772 Google Scholar
19. Kiani, G. I., K. L.Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Trans. on Antennas and Propag., Vol. 58, No. 2, 581-584, 2010.
doi:10.1049/el:19940823 Google Scholar
20. Chang, K., J. Langley, and E. Parker, "Frequency selective surfaces on biased ferrite substrates," Electron. Lett., Vol. 30, No. 5, 1193-1194, 1994.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes. Google Scholar
21. Zhang, J.-C., Y.-Z. Yin, and R. Yi, "Resonant characteristics of frequency selective surfaces on ferrite substrates," Progress In Electromagnetics Research, Vol. 95, 355-364, 2009.
doi:10.2528/PIER09072702 Google Scholar
22. Lima, A. C., E. A. Parker, and R. J. Langley, "Tunable frequency selective surface using liquid substrates," Electron. Lett., Vol. 30, 281, 1994. Google Scholar
23. Simms, R. J. T., R. Dickie, R. Cahill, N. Mitchell, H. Gamble, and V. Fusco, "Measurement of electromagnetic properties of liquid crystals at 300 GHz using a tunable FSS," 31st ESA Workshop on Antennas for Space Applications, European Space Agency, Holland, Oct. 2010.
doi:10.1109/JMEMS.2005.863704 Google Scholar
24. Zendejas, J. M., J. P. Gianvittorio, Y. Rahmat-Samii, and J. W. Judy, "Magnetic MEMS reconfigurable frequency-selective surfaces," J. Microelectromech. Syst., Vol. 15, No. 3, 613-623, 2006.
doi:10.1049/el:20057774 Google Scholar
25. Martynyuk, A. E., J. I. Martinez-Lopez, and N. A. Martynyuk, "Active frequency selective surfaces based on loaded ring slot resonators," Electron. Lett., Vol. 41, No. 1, 2-4, 2005.
doi:10.1002/jnm.681 Google Scholar
26. Malyuskin, O., V. F. Fusco, and A. G. Schuchinsky, "Modelling of impedance loaded wire frequency selective surfaces with tunable reflection and transmission characteristics," International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, Vol. 21, No. 6, 439-453, 2008.
doi:10.1109/TAP.2011.2152312 Google Scholar
27. Sanz-Izquierdo, B., E. A. Parker, and J. C. Batchelor, "Switchable frequency selective slot arrays," IEEE Trans. on Antennas and Propag., Vol. 59, No. 7, 2728-2731, 2011.
doi:10.1109/TAP.2011.2152312 Google Scholar
28., Mias C., "Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids," IEEE Microw. Wireless Compon. Lett., Vol. 15, 570-572, 2005.
doi:10.2528/PIERL11111810 Google Scholar
29. Durbin, J. L. and M. A. Saed, "Tunable filtenna using varactor tuned rings FED with an ultra wideband antenna," Progress In Electromagnetics Research Letters, Vol. 29, 43-50, 2012.
doi:10.1109/LAWP.2008.2006070 Google Scholar
30. Costa, F., A. Monorchio, S. Talrico, and F. M. Valeri, "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas Wireless Propag. Lett., Vol. 7, 676-680, 2008.
doi:10.1109/TMTT.2004.837148 Google Scholar
31. Schoenlinner, B., A. Abbaspour-Tamijani, L. C. Kempel, and G. M. Rebeiz, "Switchable low-loss RF MEMS ka-band frequency-selective surface," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 11, 2474-2481, 2004.
doi:10.1109/TMTT.2008.925575 Google Scholar
32. Coutts, G. M., R. R. Mansour, and S. K. Chaudhuri, "Mi-croelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 7, 1737-1746, 2008.
doi:10.2528/PIER10101201 Google Scholar
33. Radi, Y., S. Nikmehr, and A. Poorziad, "A novel bandwidth enhancement technique for x-band RF Mems actuated recon-figurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
doi:10.2528/PIER09112506 Google Scholar
34. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing mems-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.1049/el:19810430 Google Scholar
35. Parker, E. A. and S. M. A. Hamdy, "Rings as elements for frequency selective surfaces," Electron. Lett., Vol. 17, No. 17, 612-614, Aug. 20, 1981.
doi:10.1049/el:20010217 Google Scholar
36. Martynyuk, A. E. and J. I. Martinez-Lopez, "Frequency-selective surfaces based on shorted ring slots," Electron. Lett., Vol. 37, No. 5, 268-269, Mar. 1, 2001.
doi:10.1109/TAP.2011.2161555 Google Scholar
37. Taylor, P. S., E. A. Parker, and J. C. Batchelor, "An active annular ring frequency selective surface," IEEE Trans. on Antennas and Propag., Vol. 59, No. 9, 3265-3271, 2011.
doi:10.2528/PIERB08031214 Google Scholar
38. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective surfaces," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes. Google Scholar
39. Taylor, P. S., J. C. Batchelor, and E.A. Parker, "Dual-band FSS design using LC traps," Antennas and Propagation Conference (LAPC), 405-408, Loughborough, Nov. 8-9, 2010.
doi:10.1049/el:19910155 Google Scholar
40. Kondo, A., "Design and characteristics of ring-slot type FSS," Electron. Lett., Vol. 27, No. 3, 240-241, 1991.
doi:10.1163/156939387X00018 Google Scholar
41. Harrington, R. F., "The method of moments in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 1, No. 3, 181-200, 1987.
doi:10.1163/156939387X00018 Google Scholar
42. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, Wiley-Interscience, New York, 1972.
doi:10.1109/TMTT.1970.1127298
43. Chen, C.-C., "Transmission through a conducting screen perforated periodically with apertures," IEEE Trans. on Microw. Theory and Tech., Vol. 18, No. 9, 627-632, 1970.
doi:10.1109/22.841874 Google Scholar
44. Vendik I, B., O. G. Vendik, and E. L. Kollberg, "Commutation quality factor of two-state switchable devices," IEEE Trans. on Microw. Theory and Tech., Vol. 48, No. 5, 802-808, May 2000.
doi:10.1049/el.2010.3265 Google Scholar
45. Martynyuk, A. E., A. G. Martinez-Lopez, and J. Rodriguez-Cuevas, "Spiraphase-type element with optimal transformation of switch impedances," Electron. Lett., Vol. 46, No. 10, 673-675, 2010.
doi:10.1109/TMTT.2006.886163 Google Scholar
46. Martynyuk, A. E., A. G. Martinez-Lopez, and J. I. Martinez-Lopez, "2 bit X-band reflective waveguide phase shifter with BCB based bias circuits," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 12, 4056-4061, 2006.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes. Google Scholar