Vol. 128
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-02
An Active Ring Slot with RF MEMS Switchable Radial Stubs for Reconfigurable Frequency Selective Surface Applications
By
Progress In Electromagnetics Research, Vol. 128, 419-440, 2012
Abstract
An active ring slot resonator loaded by switchable radial stubs is investigated. It is shown that this element can be used as the unit cell of a switchable reconfigurable frequency selective surface (RFSS). Equivalent circuit and full-wave mathematical models are obtained to evaluate the reflection characteristics of the RFSS based on this element. The possibility to obtain different resonant transmission frequencies is discussed. The mathematical model developed is used to design an X band RFSS capable of obtaining resonant frequencies at 9.65, 10.28, 10.83 and 12.05 GHz. Commercially available RF MEMS switches are used to evaluate the effect of the off-state capacitances over the response of the periodic structure. To validate the numerical simulation results, different active and passive diaphragms were designed, fabricated, and tested using the waveguide simulator. A good agreement between numerical and measured results was found.
Citation
Rosalba Martinez-Lopez Jorge Rodriguez-Cuevas Alexander E. Martynyuk Jose I. Martinez-Lopez , "An Active Ring Slot with RF MEMS Switchable Radial Stubs for Reconfigurable Frequency Selective Surface Applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.
doi:10.2528/PIER12041207
http://www.jpier.org/PIER/pier.php?paper=12041207
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.
doi:10.1002/0471723770

2. Wu, T. K., Frequency Selective Surfaces and Grid Arrays, Wiley, New York, 1995.

3. Monni, S., A. Neto, G. Gerini, F. Nennie, and A. Tijhuis, "Frequency-selective surface to prevent interference between radar and SATCOM antennas," IEEE Antennas Wireless Propag. Lett., Vol. 8, 220-223, 2009.
doi:10.1109/LAWP.2009.2013166

4. Erdemli, Y. E., K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, "Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays," IEEE Trans. on Antennas and Propag., Vol. 50, No. 12, 1716-1724, 2002.
doi:10.1109/TAP.2002.807377

5. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

6., Chen Y., S. Yang, and Z.-P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.

7. Sung G., H., K. W. Sowerby, and A. G. Williamson, "Modeling a low-cost frequency selective wall for wireless-friendly indoor environments," IEEE Antennas Wireless Propag. Lett., Vol. 5, 311, 2006.

8. Barlevy, A. S. and Y. Rahmat-Samii, "On the electrical and numerical properties of high Q resonances in frequency selective surface," Progress In Electromagnetics Research, Vol. 22, 1-27, 1999.
doi:10.2528/PIER98101301

9. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

10. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701

11. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

12. De Cos, M. E., Y. Alvarez Lopez, R. C. Hadarig, and F. Las-Heras, "Flexible uniplanar artificial magnetic conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
doi:10.2528/PIER10061505

13. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

14. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Trans. on Antennas and Propag., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

15. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement," IET Microwaves, Antennas Propag., Vol. 1, No. 1, 248-254, 2007.
doi:10.1049/iet-map:20050318

16. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

17. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2998-3005, 2011.
doi:10.1109/TAP.2011.2158779

18. Chang, T. K., R. J. Langley, and E. A. Parker, "Active frequency-selective surfaces," IEE Proceedings -- Microwaves, Antennas and Propagation, Vol. 143, No. 1, 62-66, 1996.
doi:10.1109/TAP.2009.2037772

19. Kiani, G. I., K. L.Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Trans. on Antennas and Propag., Vol. 58, No. 2, 581-584, 2010.
doi:10.1049/el:19940823

20. Chang, K., J. Langley, and E. Parker, "Frequency selective surfaces on biased ferrite substrates," Electron. Lett., Vol. 30, No. 5, 1193-1194, 1994.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

21. Zhang, J.-C., Y.-Z. Yin, and R. Yi, "Resonant characteristics of frequency selective surfaces on ferrite substrates," Progress In Electromagnetics Research, Vol. 95, 355-364, 2009.
doi:10.2528/PIER09072702

22. Lima, A. C., E. A. Parker, and R. J. Langley, "Tunable frequency selective surface using liquid substrates," Electron. Lett., Vol. 30, 281, 1994.

23. Simms, R. J. T., R. Dickie, R. Cahill, N. Mitchell, H. Gamble, and V. Fusco, "Measurement of electromagnetic properties of liquid crystals at 300 GHz using a tunable FSS," 31st ESA Workshop on Antennas for Space Applications, European Space Agency, Holland, Oct. 2010.
doi:10.1109/JMEMS.2005.863704

24. Zendejas, J. M., J. P. Gianvittorio, Y. Rahmat-Samii, and J. W. Judy, "Magnetic MEMS reconfigurable frequency-selective surfaces," J. Microelectromech. Syst., Vol. 15, No. 3, 613-623, 2006.
doi:10.1049/el:20057774

25. Martynyuk, A. E., J. I. Martinez-Lopez, and N. A. Martynyuk, "Active frequency selective surfaces based on loaded ring slot resonators," Electron. Lett., Vol. 41, No. 1, 2-4, 2005.
doi:10.1002/jnm.681

26. Malyuskin, O., V. F. Fusco, and A. G. Schuchinsky, "Modelling of impedance loaded wire frequency selective surfaces with tunable reflection and transmission characteristics," International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, Vol. 21, No. 6, 439-453, 2008.
doi:10.1109/TAP.2011.2152312

27. Sanz-Izquierdo, B., E. A. Parker, and J. C. Batchelor, "Switchable frequency selective slot arrays," IEEE Trans. on Antennas and Propag., Vol. 59, No. 7, 2728-2731, 2011.
doi:10.1109/TAP.2011.2152312

28., Mias C., "Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids," IEEE Microw. Wireless Compon. Lett., Vol. 15, 570-572, 2005.
doi:10.2528/PIERL11111810

29. Durbin, J. L. and M. A. Saed, "Tunable filtenna using varactor tuned rings FED with an ultra wideband antenna," Progress In Electromagnetics Research Letters, Vol. 29, 43-50, 2012.
doi:10.1109/LAWP.2008.2006070

30. Costa, F., A. Monorchio, S. Talrico, and F. M. Valeri, "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas Wireless Propag. Lett., Vol. 7, 676-680, 2008.
doi:10.1109/TMTT.2004.837148

31. Schoenlinner, B., A. Abbaspour-Tamijani, L. C. Kempel, and G. M. Rebeiz, "Switchable low-loss RF MEMS ka-band frequency-selective surface," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 11, 2474-2481, 2004.
doi:10.1109/TMTT.2008.925575

32. Coutts, G. M., R. R. Mansour, and S. K. Chaudhuri, "Mi-croelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 7, 1737-1746, 2008.
doi:10.2528/PIER10101201

33. Radi, Y., S. Nikmehr, and A. Poorziad, "A novel bandwidth enhancement technique for x-band RF Mems actuated recon-figurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
doi:10.2528/PIER09112506

34. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing mems-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.1049/el:19810430

35. Parker, E. A. and S. M. A. Hamdy, "Rings as elements for frequency selective surfaces," Electron. Lett., Vol. 17, No. 17, 612-614, Aug. 20, 1981.
doi:10.1049/el:20010217

36. Martynyuk, A. E. and J. I. Martinez-Lopez, "Frequency-selective surfaces based on shorted ring slots," Electron. Lett., Vol. 37, No. 5, 268-269, Mar. 1, 2001.
doi:10.1109/TAP.2011.2161555

37. Taylor, P. S., E. A. Parker, and J. C. Batchelor, "An active annular ring frequency selective surface," IEEE Trans. on Antennas and Propag., Vol. 59, No. 9, 3265-3271, 2011.
doi:10.2528/PIERB08031214

38. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective surfaces," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

39. Taylor, P. S., J. C. Batchelor, and E.A. Parker, "Dual-band FSS design using LC traps," Antennas and Propagation Conference (LAPC), 405-408, Loughborough, Nov. 8-9, 2010.
doi:10.1049/el:19910155

40. Kondo, A., "Design and characteristics of ring-slot type FSS," Electron. Lett., Vol. 27, No. 3, 240-241, 1991.
doi:10.1163/156939387X00018

41. Harrington, R. F., "The method of moments in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 1, No. 3, 181-200, 1987.
doi:10.1163/156939387X00018

42. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, Wiley-Interscience, New York, 1972.
doi:10.1109/TMTT.1970.1127298

43. Chen, C.-C., "Transmission through a conducting screen perforated periodically with apertures," IEEE Trans. on Microw. Theory and Tech., Vol. 18, No. 9, 627-632, 1970.
doi:10.1109/22.841874

44. Vendik I, B., O. G. Vendik, and E. L. Kollberg, "Commutation quality factor of two-state switchable devices," IEEE Trans. on Microw. Theory and Tech., Vol. 48, No. 5, 802-808, May 2000.
doi:10.1049/el.2010.3265

45. Martynyuk, A. E., A. G. Martinez-Lopez, and J. Rodriguez-Cuevas, "Spiraphase-type element with optimal transformation of switch impedances," Electron. Lett., Vol. 46, No. 10, 673-675, 2010.
doi:10.1109/TMTT.2006.886163

46. Martynyuk, A. E., A. G. Martinez-Lopez, and J. I. Martinez-Lopez, "2 bit X-band reflective waveguide phase shifter with BCB based bias circuits," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 12, 4056-4061, 2006.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.