Vol. 129
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-28
Resolving Phase Ambiguity in the Inverse Problem of Reflection-Only Measurement Methods
By
Progress In Electromagnetics Research, Vol. 129, 405-420, 2012
Abstract
We have applied the phase unwrapping technique to resolve the phase ambiguity problem arising from complex expressions of scattering parameters, for reflection-only measurement configurations, since, at some instances, only one side of the sample under test is accessible for electromagnetic measurements. We considered two different measurement configurations for testing the applicability of the phase unwrapping technique as: 1) two identical samples with different lengths flushed by a short-circuit termination and 2) one sample shorted by a varying short-circuit termination. For each measurement configuration, the underlying expressions for the reflection scattering parameters are derived. For both cases, we evaluated the suitability of the phase unwrapping technique by considering a highly-dispersive medium (distilled water) as our test sample. We note that continuity of the real part of the complex wavelength is a key issue in the unwrapping technique for (one-port) reflection-only measurements.
Citation
Ugur Cem Hasar, Joaquim Jose Barroso, Cumali Sabah, and Yunus Kaya, "Resolving Phase Ambiguity in the Inverse Problem of Reflection-Only Measurement Methods," Progress In Electromagnetics Research, Vol. 129, 405-420, 2012.
doi:10.2528/PIER12052311
References

1. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701        Google Scholar

2. Bombay, M. S. and O. M. Ramahi, "Near-field probes using double and single negative media," Phys. Rev. E, Vol. 79, 016602, 2009.        Google Scholar

3. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409        Google Scholar

4. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932        Google Scholar

5. Hyde, IV, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405        Google Scholar

6. Hasar, U. C. and I. Y. Ozbek, "Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2100-2109, 2011.
doi:10.1163/156939311798072153        Google Scholar

7. Ho, M., "Penetration of EM fields into circular dielectric/magnetic container: Two-dimensional simulation," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 111-122, 2011.
doi:10.1163/156939311793898314        Google Scholar

8. Moradi, G. and A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
doi:10.2528/PIER07080201        Google Scholar

9. Yan, L. P., K.-M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.        Google Scholar

10. Boughriet, A. -H., C. Legrand, and A. Chapoton, "A noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032        Google Scholar

11. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, Vol. 42, 131-142, 2003.
doi:10.2528/PIER03010602        Google Scholar

12. Stuchly, S. S. and M. Matuszewski, "A combined total reflection transmission method in application to dielectric spectroscopy," IEEE Trans. Instrum. Meas., Vol. 27, No. 3, 285-288, 1978.
doi:10.1109/TIM.1978.4314682        Google Scholar

13. Seal, M. D., M. W. Hyde, and M. J. Havrilla, "Nondestructive complex permittivity and permeability extraction using a two-layer dual-waveguide probe measurement geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108        Google Scholar

14. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336        Google Scholar

15. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520        Google Scholar

16. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 8, 1946-1951, 2003.
doi:10.1109/TMTT.2003.815274        Google Scholar

17. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382        Google Scholar

18. Ness, J., "Broad-band permittivity measurements using the semiautomatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198        Google Scholar

19. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179        Google Scholar

20. Hasar, U. C. and O. E. Inan, "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 337-341, 2009.
doi:10.1002/mop.24048        Google Scholar

21. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, No. 11, 114703, 2009.        Google Scholar

22. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805        Google Scholar

23. Hasar, U. C., "Unique retrieval of complex permittivity of low-loss dielectric materials from transmission-only measurements," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 3, 562-564, 2011.
doi:10.1109/LGRS.2010.2091392        Google Scholar

24. Chen, X., T. M. Gregorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.        Google Scholar

25. Buyukozturk, O., T-Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004        Google Scholar

26. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2224-2230, 2007.
doi:10.1109/TMTT.2007.906473        Google Scholar

27. Szabo, Z., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310        Google Scholar

28. Barroso, J. J. and U. C. Hasar, "Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods," J. Infrared Milli. Terahz Waves, Vol. 32, 857-866, 2011.
doi:10.1007/s10762-011-9792-7        Google Scholar

29. Chavez, S., Q.-S. Xiang, and L. An, "Understanding phase maps in MRI: A new cutline phase unwrapping method," IEEE Trans. Med. Imag., Vol. 21, No. 8, 966-977, 2002.
doi:10.1109/TMI.2002.803106        Google Scholar

30. Huang, Y., "Design, calibration and data interpretation of a one-port large coaxial dielectric measurement cell," Meas. Sci. Technol., Vol. 12, 111-115, 2001.
doi:10.1088/0957-0233/12/1/315        Google Scholar

31. Hasar, U. C. and M. T. Yurtcan, "A microwave method based on amplitude-only reflection measurements for permittivity determination of low-loss materials," Measurement, Vol. 43, No. 9, 1255-1265, 2010.
doi:10.1016/j.measurement.2010.07.002        Google Scholar

32. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, West Sussex, NJ, 2012.

33. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,", Tech. Note 1355, NIST, Boulder, CO, 1992.        Google Scholar

34. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, "Electrodynamics of Continuous Media," 279, Pergamon, Oxford, 1984.        Google Scholar

35. Woodly, J. and M. Mojahedi, "On the signs of the imaginary parts of the e®ective permittivity and permeability in metamaterials," J. Opt. Soc. Am. B., Vol. 27, No. 5, 1016-1021, 2010.
doi:10.1364/JOSAB.27.001016        Google Scholar

36. Wang, H., X. Chen, and K. Huang, "An improved approach to determine the branch index for retrieving the constitutive effective parameters of metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 85-96, 2011.
doi:10.1163/156939311793898341        Google Scholar

37. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699        Google Scholar