1. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701 Google Scholar
2. Bombay, M. S. and O. M. Ramahi, "Near-field probes using double and single negative media," Phys. Rev. E, Vol. 79, 016602, 2009. Google Scholar
3. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409 Google Scholar
4. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
5. Hyde, IV, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405 Google Scholar
6. Hasar, U. C. and I. Y. Ozbek, "Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2100-2109, 2011.
doi:10.1163/156939311798072153 Google Scholar
7. Ho, M., "Penetration of EM fields into circular dielectric/magnetic container: Two-dimensional simulation," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 111-122, 2011.
doi:10.1163/156939311793898314 Google Scholar
8. Moradi, G. and A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
doi:10.2528/PIER07080201 Google Scholar
9. Yan, L. P., K.-M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007. Google Scholar
10. Boughriet, A. -H., C. Legrand, and A. Chapoton, "A noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032 Google Scholar
11. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, Vol. 42, 131-142, 2003.
doi:10.2528/PIER03010602 Google Scholar
12. Stuchly, S. S. and M. Matuszewski, "A combined total reflection transmission method in application to dielectric spectroscopy," IEEE Trans. Instrum. Meas., Vol. 27, No. 3, 285-288, 1978.
doi:10.1109/TIM.1978.4314682 Google Scholar
13. Seal, M. D., M. W. Hyde, and M. J. Havrilla, "Nondestructive complex permittivity and permeability extraction using a two-layer dual-waveguide probe measurement geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108 Google Scholar
14. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
15. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520 Google Scholar
16. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 8, 1946-1951, 2003.
doi:10.1109/TMTT.2003.815274 Google Scholar
17. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
18. Ness, J., "Broad-band permittivity measurements using the semiautomatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198 Google Scholar
19. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179 Google Scholar
20. Hasar, U. C. and O. E. Inan, "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 337-341, 2009.
doi:10.1002/mop.24048 Google Scholar
21. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, No. 11, 114703, 2009. Google Scholar
22. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805 Google Scholar
23. Hasar, U. C., "Unique retrieval of complex permittivity of low-loss dielectric materials from transmission-only measurements," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 3, 562-564, 2011.
doi:10.1109/LGRS.2010.2091392 Google Scholar
24. Chen, X., T. M. Gregorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004. Google Scholar
25. Buyukozturk, O., T-Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004 Google Scholar
26. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2224-2230, 2007.
doi:10.1109/TMTT.2007.906473 Google Scholar
27. Szabo, Z., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310 Google Scholar
28. Barroso, J. J. and U. C. Hasar, "Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods," J. Infrared Milli. Terahz Waves, Vol. 32, 857-866, 2011.
doi:10.1007/s10762-011-9792-7 Google Scholar
29. Chavez, S., Q.-S. Xiang, and L. An, "Understanding phase maps in MRI: A new cutline phase unwrapping method," IEEE Trans. Med. Imag., Vol. 21, No. 8, 966-977, 2002.
doi:10.1109/TMI.2002.803106 Google Scholar
30. Huang, Y., "Design, calibration and data interpretation of a one-port large coaxial dielectric measurement cell," Meas. Sci. Technol., Vol. 12, 111-115, 2001.
doi:10.1088/0957-0233/12/1/315 Google Scholar
31. Hasar, U. C. and M. T. Yurtcan, "A microwave method based on amplitude-only reflection measurements for permittivity determination of low-loss materials," Measurement, Vol. 43, No. 9, 1255-1265, 2010.
doi:10.1016/j.measurement.2010.07.002 Google Scholar
32. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, West Sussex, NJ, 2012.
33. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,", Tech. Note 1355, NIST, Boulder, CO, 1992. Google Scholar
34. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, "Electrodynamics of Continuous Media," 279, Pergamon, Oxford, 1984. Google Scholar
35. Woodly, J. and M. Mojahedi, "On the signs of the imaginary parts of the e®ective permittivity and permeability in metamaterials," J. Opt. Soc. Am. B., Vol. 27, No. 5, 1016-1021, 2010.
doi:10.1364/JOSAB.27.001016 Google Scholar
36. Wang, H., X. Chen, and K. Huang, "An improved approach to determine the branch index for retrieving the constitutive effective parameters of metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 85-96, 2011.
doi:10.1163/156939311793898341 Google Scholar
37. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699 Google Scholar