Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-01
Data Acquisition and Processing of Parallel Frequency SAR Based on Compressive Sensing
By
Progress In Electromagnetics Research, Vol. 133, 199-215, 2013
Abstract
Traditional synthetic aperture radar (SAR) utilizes Shannon-Nyquist theorem for high bandwidth signal sampling, which induces the complicated system, and it is difficult to transmit and process a huge amount of data caused by high A/D rate. Compressive sensing (CS) indicates that the compressible signal using a few measurements can be reconstructed by solving a convex optimization problem. A novel SAR based on CS theory, named as parallel frequencies SAR (PFSAR), is proposed in this paper. PFSAR transmits a set of narrow bandwidth signals which compose the large total bandwidth. Therefore PFSAR only uses much less data to obtain the same resolution SAR image compared with a traditional SAR system. The data acquisition mode of PFSAR is developed and an algorithm of target scene reconstruction in pursuance of compressive sensing applied to PFSAR is proposed. The azimuth imaging of PFSAR is carried out based on Doppler Effect, and then, the range imaging is performed by using compressive sensing of parallel frequencies signal. Several simulations demonstrate the feasibility and superiority of PFSAR via compressive sensing.
Citation
Yanan You, Huaping Xu, Chun-Sheng Li, and Lvqian Zhang, "Data Acquisition and Processing of Parallel Frequency SAR Based on Compressive Sensing," Progress In Electromagnetics Research, Vol. 133, 199-215, 2013.
doi:10.2528/PIER12070613
References

1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

2. Donoho, D., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

3. Candes, E., "Compressive sampling," Proceedings of the International Congress of Mathematicians, 1433-1452, Madrid, Spain, 2006.

4. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," IEEE Radar Conference, 128-133, April 2007.

5. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277

6. Smith, G. E., T. Diethe, Z. Hussain, J. Shawe-Taylor, and D. R. Hardoon, "Compressed sampling for pulse Doppler radar," IEEE Radar Conference, 887-892, 2010.

7. Bhattacharya, S., T. Blumensath, B. Mulgrew, and M. Davies, "Fast encoding of synthetic aperture radar row data using compressed sensing," IEEE Workshop on Statistical Signal Processing, 448-452, Madison, USA, 2007.

8. Rilling, G., M. Davies, and B. Mulgrew, "Compressed sensing based compression of SAR raw data," Signal Processing with Adaptive Sparse Structured Representations, Saint-Malo(F), April 2009.

9. Tello Alonso, M., P. Lopez-Dekker, and J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE International Geoscience and Remote Sensing Symposium, Vol. 2, II-213-II-216, 2008.

10. Tello Alonso, M., P. Lopez-Dekker, and J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4285-4295, 2010.
doi:10.1109/TGRS.2010.2051231

11. Lin, Y., Y., Y. Wu, W. Hong, and B. Zhang, "Compressive sensing in radar imaging," IET International Radar Conference, 1-3, 2009.

12. Anitori, L., M. Otten, and P. Hoogeboom, "Compressive sensing for high resolution radar imaging," Proceedings of Asia-Pacific Microwave Conference, 1809-1812, 2010.

13. Mann, S., R. Phogat, and A. K. Mishra, "Dantzig selector based compressive sensing for radar image enhancement," Annual IEEE India Conference, INDICON, 1-4, 2010.

14. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526

15. Ramkrishnan, N., E. Ertin, and R. L. Moses, "Enhancement of coupled multichannel images using sparsity constraints," IEEE Transactions on Image Processing, Vol. 19, No. 8, 2115-2126, 2010.
doi:10.1109/TIP.2010.2045701

16. Fornasier, M. and H. Rauhut, "Recovery algorithms for vector-valued data with joint sparsity constraints ," SIAM J. Numer. Anal, Vol. 26, No. 2, 577-613, 2008.
doi:10.1137/0606668909

17. Liang, Q., "Compressive sensing for synthetic aperture radar in fast-time and slow-time domains," Proceedings of the IEEE, 1479-1483, Asilomar, 2011.

18. Xu, J., Y. Pi, and Z. Cao, "Bayesian compressive sensing in synthetic aperture radar imaging," IET Radar, Sonar and Navigation, Vol. 6, No. 1, 2-8, 2012.

19. Samadi, S., M. Cetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar, Sonar and Navigation, Vol. 5, No. 2, 182-193, 2011.
doi:10.1049/iet-rsn.2009.0235

20. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

21. Li, J., S. S. Zhang and J. F. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307

22. Ren, X. Z., Y. F. Li, and R. L. Yang, "Four-dimensional SAR imaging scheme based on compressive sensing," Progress In Electromagnetics Research B, Vol. 39, 225-239, 2012.
doi:10.2528/PIERB11121212

23. Li, J., S. Zhang, and J. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging ," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307

24. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

25. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

26. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, Vol. 90, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009

27. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, 489-509, 2006.
doi:10.1109/TIT.2005.862083

28. Blumensath, T. and M. Davies, "Gradient pursuits," IEEE Transactions on Signal Processing, Vol. 56, 2370-2382, 2008.
doi:10.1109/TSP.2007.916124

29. Davis, G., S. Mallat, and M. Avellaneda, "Greedy adaptive approximation," Journal of Constructive Approximation, Vol. 12, 57-98, 1997.

30. Donoho, D., M. Elad, and V. Temlyakov, "Stable recovery of sparse overcomplete representations in the presence of noise," IEEE Transactions on Information Theory, Vol. 52, 6-18, 2006.
doi:10.1109/TIT.2005.860430

31. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurement via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108