1. Friedman, D. S., B. J. O'Colmain, B. Munoz, S. C. Tomany, C. McCarty, P. T. V. M. De Jong, et al. "Prevalence of age-related macular degeneration in the United States ," Archives of Ophthalmology, Vol. 122, No. 4, 564-572, 2004.
doi:10.1001/archopht.122.4.564 Google Scholar
2. Margalit, E. and S. R. Sadda, "Retinal and optic nerve diseases," Artificial Organs, Vol. 27, No. 11, 963-974, 2003.
doi:10.1046/j.1525-1594.2003.07304.x Google Scholar
3. Rein, D. B., J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, and J. Saaddine, "Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments," Archives of Ophthalmology, Vol. 127, No. 4, 533-540, 2009.
doi:10.1001/archophthalmol.2009.58 Google Scholar
4. Margalit, E., M. Maia, J. D.Weiland, R. J. Greenberg, G. Y. Fujii, G. Torres, et al. "Retinal prosthesis for the blind," Survey of Ophthalmology, Vol. 47, No. 4, 335-356, 2002.
doi:10.1016/S0039-6257(02)00311-9 Google Scholar
5. Weiland, J. D., W. Liu, and M. S. Humayun, "Retinal prosthesis," Annual Review of Biomedical Engineering, Vol. 7, No. 1, 361-401, 2005, doi: 10.1146/annurev.bioeng.7.060804.100435.
doi:10.1146/annurev.bioeng.7.060804.100435 Google Scholar
6. Rogers, K., "The Eye: The Physiology of Human Perception," Britannica Educational Publishing, Chicago, 2010, Available from: http://RMIT.eblib.com.au/patron/FullRecord.aspx?p=514090. Google Scholar
7. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
8. Lin, J. C., "A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation," IEEE Antennas and Propagation Magazine, Vol. 48, No. 1, 157-159, 2006.
doi:10.1109/MAP.2006.1645601 Google Scholar
9. Kwak, S. I., K. Chang, and Y. J. Yoon, "Small spiral antenna for wideband capsule endoscope system," Electronics Letters, Vol. 42, No. 23, 1328-1329, 2006.
doi:10.1049/el:20062074 Google Scholar
10. Karacolak, T., R. Cooper, and E. Topsakal, "Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2806-2812, 2009.
doi:10.1109/TAP.2009.2027197 Google Scholar
11. Soora, S., K. Gosalia, M. S. Humayun, and G. Lazzi, "A comparison of two and three dimensional dipole antennas for an implantable retinal prosthesis," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 622-629, 2008.
doi:10.1109/TAP.2008.916889 Google Scholar
12. Liu, W. C., S. H. Chen, and C. M. Wu, "Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices," Microwave and Optical Technology Letters, Vol. 51, No. 3, 755-757, 2009.
doi:10.1002/mop.24142 Google Scholar
13. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1934-1943, 2004.
doi:10.1109/TMTT.2004.832018 Google Scholar
14. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, 2008.
doi:10.1109/TMTT.2008.919373 Google Scholar
15. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry," Microwave and Optical Technology Letters, Vol. 51, No. 1, 749-752, 2009.
doi:10.1002/mop.24189 Google Scholar
16. Huang, F. J., C. M. Lee, C. L. Chang, L. K. Chen, T. C. Yo, and C. H. Luo, "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2646-2653, 2011.
doi:10.1109/TAP.2011.2152317 Google Scholar
17. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693 Google Scholar
18. Liu, W. C., F. M. Yeh, and M. Ghavami, "Miniaturized implantable broadband antenna for biotelemetry communication," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2407-2409, 2008.
doi:10.1002/mop.23649 Google Scholar
19. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, 2004.
doi:10.1109/TMTT.2004.831976 Google Scholar
20. Balanis, C. A., Antenna Theory, 3rd Ed., John Wiley & Sons, Inc., New Jersey, 2005.
21. Ulaby, F. T., Fundamentals of Applied Electromagnetics, 5th Ed., 464, Pearson Education, Inc., Upper Saddle River, 2007.
22. Lee, C. M., T. C. Yo, C. H. Luo, C. H. Tu, and Y. Z. Juang, "Compact broadband stacked implantable antenna for biotelemetry with medical devices," Electronics Letters, Vol. 43, No. 12, 660-662, 2007.
doi:10.1049/el:20070463 Google Scholar
23. Waterhouse, R. B., Microstrip Patch Antennas: A Designer's Guide, Kluwer Academic Publishers, Boston, 2003.
24. Blake, L. V. and M. W. Long, "Antennas --- Fundamentals, Design, Measurement," SciTech Publishing, 2009, 371-421. Google Scholar
25. Johnson, R. C., Antenna Engineering Handbook, 3rd Ed., McGraw-Hill, Inc., New York, 1993.
26. IEEE "IEEE Standard Test Procedures for Antennas," Wiley-Interscience, 1979. Google Scholar