Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-09
Hermetic Implantable Antenna Inside Vitreous Humor Simulating Fluid
By
Progress In Electromagnetics Research, Vol. 133, 571-590, 2013
Abstract
Retinal prosthesis system is currently being developed in various places around the world. This system involved data transfer between an implanted antenna inside an eyeball and an external camera that is located just in front of the eyeball. While there are plenty of publications about the stimulating electrodes or the processing unit of the system itself, very limited amount has been published regarding the wireless communication link between the two antennas despite the fact that the electromagnetic wave will propagate through a complex medium in the form of Vitreous Humor. This paper will discuss about the constraints associated with implanting an antenna into an eyeball. An antenna design and simulation was performed with the aid of High Frequency Structure Simulator (HFSS) and its Finite Element Method (FEM) mathematical solver in the operating frequency of 402-405 MHz. The antenna, which was a 4 layer microstrip antenna, was positioned at the centre of a spherical model filled with homogeneous Vitreous Humor material. Antenna performances that include return loss, bandwidth, gain, radiation pattern, and SAR value are analysed and compared against those of other implantable antennas operating in Medical Implant Communication Service (MICS) band. Free space and simulating fluid measurements were also conducted on the fabricated antenna to validate the simulation results. It was concluded that the fabricated antenna was able to produce the similar performance to the simulation results and hence at the same level as the other antennas operating in material with lower dielectric constants and conductivities.
Citation
Hans Permana, Qiang Fang, and Wayne Rowe, "Hermetic Implantable Antenna Inside Vitreous Humor Simulating Fluid," Progress In Electromagnetics Research, Vol. 133, 571-590, 2013.
doi:10.2528/PIER12090806
References

1. Friedman, D. S., B. J. O'Colmain, B. Munoz, S. C. Tomany, C. McCarty, P. T. V. M. De Jong, et al. "Prevalence of age-related macular degeneration in the United States ," Archives of Ophthalmology, Vol. 122, No. 4, 564-572, 2004.
doi:10.1001/archopht.122.4.564

2. Margalit, E. and S. R. Sadda, "Retinal and optic nerve diseases," Artificial Organs, Vol. 27, No. 11, 963-974, 2003.
doi:10.1046/j.1525-1594.2003.07304.x

3. Rein, D. B., J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, and J. Saaddine, "Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments," Archives of Ophthalmology, Vol. 127, No. 4, 533-540, 2009.
doi:10.1001/archophthalmol.2009.58

4. Margalit, E., M. Maia, J. D.Weiland, R. J. Greenberg, G. Y. Fujii, G. Torres, et al. "Retinal prosthesis for the blind," Survey of Ophthalmology, Vol. 47, No. 4, 335-356, 2002.
doi:10.1016/S0039-6257(02)00311-9

5. Weiland, J. D., W. Liu, and M. S. Humayun, "Retinal prosthesis," Annual Review of Biomedical Engineering, Vol. 7, No. 1, 361-401, 2005, doi: 10.1146/annurev.bioeng.7.060804.100435.
doi:10.1146/annurev.bioeng.7.060804.100435

6. Rogers, K., "The Eye: The Physiology of Human Perception," Britannica Educational Publishing, Chicago, 2010, Available from: http://RMIT.eblib.com.au/patron/FullRecord.aspx?p=514090.

7. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

8. Lin, J. C., "A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation," IEEE Antennas and Propagation Magazine, Vol. 48, No. 1, 157-159, 2006.
doi:10.1109/MAP.2006.1645601

9. Kwak, S. I., K. Chang, and Y. J. Yoon, "Small spiral antenna for wideband capsule endoscope system," Electronics Letters, Vol. 42, No. 23, 1328-1329, 2006.
doi:10.1049/el:20062074

10. Karacolak, T., R. Cooper, and E. Topsakal, "Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2806-2812, 2009.
doi:10.1109/TAP.2009.2027197

11. Soora, S., K. Gosalia, M. S. Humayun, and G. Lazzi, "A comparison of two and three dimensional dipole antennas for an implantable retinal prosthesis," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 622-629, 2008.
doi:10.1109/TAP.2008.916889

12. Liu, W. C., S. H. Chen, and C. M. Wu, "Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices," Microwave and Optical Technology Letters, Vol. 51, No. 3, 755-757, 2009.
doi:10.1002/mop.24142

13. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1934-1943, 2004.
doi:10.1109/TMTT.2004.832018

14. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, 2008.
doi:10.1109/TMTT.2008.919373

15. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry," Microwave and Optical Technology Letters, Vol. 51, No. 1, 749-752, 2009.
doi:10.1002/mop.24189

16. Huang, F. J., C. M. Lee, C. L. Chang, L. K. Chen, T. C. Yo, and C. H. Luo, "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2646-2653, 2011.
doi:10.1109/TAP.2011.2152317

17. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693

18. Liu, W. C., F. M. Yeh, and M. Ghavami, "Miniaturized implantable broadband antenna for biotelemetry communication," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2407-2409, 2008.
doi:10.1002/mop.23649

19. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, 2004.
doi:10.1109/TMTT.2004.831976

20. Balanis, C. A., Antenna Theory, 3rd Ed., John Wiley & Sons, Inc., New Jersey, 2005.

21. Ulaby, F. T., Fundamentals of Applied Electromagnetics, 5th Ed., 464, Pearson Education, Inc., Upper Saddle River, 2007.

22. Lee, C. M., T. C. Yo, C. H. Luo, C. H. Tu, and Y. Z. Juang, "Compact broadband stacked implantable antenna for biotelemetry with medical devices," Electronics Letters, Vol. 43, No. 12, 660-662, 2007.
doi:10.1049/el:20070463

23. Waterhouse, R. B., Microstrip Patch Antennas: A Designer's Guide, Kluwer Academic Publishers, Boston, 2003.

24. Blake, L. V. and M. W. Long, "Antennas --- Fundamentals, Design, Measurement," SciTech Publishing, 2009, 371-421.

25. Johnson, R. C., Antenna Engineering Handbook, 3rd Ed., McGraw-Hill, Inc., New York, 1993.

26. IEEE "IEEE Standard Test Procedures for Antennas," Wiley-Interscience, 1979.