1. Xu, F., Z.-X. Wang, X. Chen, and X.-A. Wang, "Dual band-notched UWB antenna based on spiral electromagnetic-bandgap structure," Progress In Electromagnetics Research B, Vol. 39, 393-409, 2012.
doi:10.2528/PIERB12021607 Google Scholar
2. Tilanthe, P., P. C. Sharma, and T. K. Bandopadhyay, "A compact UWB antenna with dual band rejection," Progress In Electromagnetics Research B, Vol. 35, 389-405, 2011.
doi:10.2528/PIERB11092204 Google Scholar
3. Khaled, E. E. M., A. A. R. Saad, and D. A. Salem, "A proximity-FED annular slot antenna with di®erent a band-notch manipulations for ultra-wide band applications," Progress In Electromagnetics Research B, Vol. 37, 289-306, 2012.
doi:10.2528/PIERB11103102 Google Scholar
4. Chen, H., Y. Ding, and D. S. Cai, "A CPW-fed UWB antenna with WiMAX/WLAN band-notched characteristics," Progress In Electromagnetics Research, Vol. 25, 163-173, 2011. Google Scholar
5. Lin, S., R.-N. Cai, G.-L. Huang, and J.-X. Wang, "A miniature UWB semi-circle monopole printed antenna," Progress In Electromagnetics Research Letters, Vol. 23, 157-163, 2011. Google Scholar
6. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012. Google Scholar
7. Yazdi, M. and N. Komjani, "A compact band-notched UWB planar monopole antenna with parasitic elements," Progress In Electromagnetics Research, Vol. 24, 129-138, 2011. Google Scholar
8. Osman, M. A. R., M. K. A. Rahim, M. Azfar, N. A. Samsuri, F. Zubir, and K. Kamardin, "Design, implementation and performance of ultra-wideband textile antenna," Progress In Electromagnetics Research B, Vol. 27, 307-325, 2011. Google Scholar
9. Zhou, D., S.-C. S. Gao, F. Zhu, R. A. Abd-Alhameed, and J.-D. Xu, "A simple and compact planar ultra wideband antenna with single or dual band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 47-65, 2012.
doi:10.2528/PIER11101104 Google Scholar
10. Malik, J. and M. V. Kartikeyan, "Metamaterial inspired patch antenna with L-shape slot loaded ground plane for dual band (WiMAX/WLAN) applications," Progress In Electromagnetics Research Letters, Vol. 31, 35-43, 2012.
doi:10.2528/PIERL12021908 Google Scholar
11. Mahdy, M. R. C., M. R. A. Zuboraj, A. A. N. Ovi, and M. A. Matin, "Novel design of triple band rectangular patch antenna loaded with metamaterial," Progress In Electromagnetics Research Letters, Vol. 21, 99-107, 2011. Google Scholar
12. Jing, N., H. Zhao, and L. Huang, "A novel design of planar spiral antenna with metamaterial," PIERS Proceedings, 725-728, Xi'an, China, Mar. 22-26, 2010. Google Scholar
13. Mahdy, M. R. C., M. R. A. Zuboraj, A. A. N. Ovi, and M. A. Matin, "Novel concept of ENG metamaterial in rectangular microstrip patch antenna (partially loaded case) for dual band application," PIERS Proceedings, 920-923, Marrakesh, Morocco, Mar. 20-23, 2011. Google Scholar
14. Du, G.-H., X. Tang, and F. Xiao, "Tri-band metamaterial-inspired monopole antenna with modified S-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 23, 39-48, 2011. Google Scholar
15. Lee, H.-M. and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012. Google Scholar
16. Danaeifar, M., M. Kamyab, A. Jafargholi, and M. Veysi, "Bandwidth enhancement of a class of cloaks incorporating metamaterials ," Progress In Electromagnetics Research Letters, Vol. 28, 37-44, 2012.
doi:10.2528/PIERL11093005 Google Scholar
17. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration ," IEEE Trans. Antennas and Propag., Vol. 54, No. 8, 2283-2291, Aug. 2006.
doi:10.1109/TAP.2006.879199 Google Scholar
18. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Design of resonant small antenna using composite right/left-handed transmission line," Antennas Propagat. Soc. Int. Symp., Vol. 2B, 2005. Google Scholar
19. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications --- The Engineering Approach, Wiley Interscience, 2006.
doi:10.1002/0471754323
20. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
21. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, Sep. 2004.
doi:10.1109/MMW.2004.1337766 Google Scholar
22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, Feb. 1999.
doi:10.1109/22.798002 Google Scholar
23. Eleftheriades, G. V., "EM transmission-line metamaterials," Materials Today, Vol. 12, No. 3, 30-41, Mar. 2009.
doi:10.1016/S1369-7021(09)70073-2 Google Scholar
24. Majid, H. A., M. K. A Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetic Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301 Google Scholar
25. Tang, W. X., Q. Cheng, and T. J. Cui, "Electric and magnetic responses from metamaterial unit cells at Terahertz," Terahertz Science and Technology, Vol. 2, No. 1, Mar. 2009. Google Scholar
26. Li, L., H. Yao, Q. Wu, and Z. Chen, "Broad-bandwidth and low-loss metamaterials: Theory, design and realization," J. Zhejiang Univ. Science A, Vol. 7, No. 1, 5-23, Jan. 2006.
doi:10.1631/jzus.2006.A0005 Google Scholar
27. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. Antennas Propagat., Vol. 57, No. 2, 331-338, Feb. 2009.
doi:10.1109/TAP.2008.2011230 Google Scholar
28. Liu, J., K. P. Esselle, and S. Zhong, "An extremely wideband rectangular monopole antenna with a modified microstrip feed," Proc. Antennas and Propagation, (EuCAP), 1-5, Apr. 2010. Google Scholar
29. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1298-1324, 2005.
doi:10.1109/TAP.2005.844443 Google Scholar
30. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetic Research, Vol. 62, 1-20, 2006.
doi:10.2528/PIER06033003 Google Scholar
31. Yang, H. Y. D. and Y. Y. Zhang, "A wideband miniaturized dipole antenna on a printed circuit board," Progress In Electromagnetic Research C, Vol. 10, 175-185, 2009. Google Scholar
32. Chen, Z. N., T. S. P. See, and X. Qing, "Small printed ultrawideband antennas with reduced ground plane effect," IEEE Trans. Antennas Propagat., Vol. 55, No. 2, 383-388, 2007.
doi:10.1109/TAP.2006.889823 Google Scholar
33. Sadat, S., M. Fardis, F. G. Kharakhili, and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWB applications," Progress In Electromagnetic Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06082901 Google Scholar
34. Hayt, Jr., W. H. and J. A. Buck, Engineering Electromagnetics, 6th Ed., McGraw Hill, 2001.
35. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, 3rd Ed., McGraw-Hill, 2003.