1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, New York, 1991.
2. Franceschetti, G. and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, New York, 1999.
3. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011. Google Scholar
4. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle ," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110 Google Scholar
5. Park, S.-H., J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012. Google Scholar
6. Moore, R. K., J. P. Claassen, and Y. H. Lin, "Scanning spaceborne synthetic aperture radar with integrated radiometer," IEEE Trans. Aerosp. Electron. Syst., Vol. 17, No. 3, 410-420, May 1981.
doi:10.1109/TAES.1981.309069 Google Scholar
7. Monti Guarnieri, A. and C. Prati, "ScanSAR focussing and interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 4, 1029-1038, Jul. 1996.
doi:10.1109/36.508420 Google Scholar
8. De Zan, F. and A. Monti Guarnieri, "TOPSAR: Terrain observation by progressive scans," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 9, 2352-2360, Sep. 2006.
doi:10.1109/TGRS.2006.873853 Google Scholar
9. Meta, A., J. Mittermayer, P. Prats, R. Scheiber, and U. Steinbrecher, "TOPS imaging with TerraSAR-X: Mode design and performance analysis," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 759-769, Feb. 2010.
doi:10.1109/TGRS.2009.2026743 Google Scholar
10. Xu, W., P. Huang, Y. Deng, J. Sun, and X. Shang, "An efficient approach with scaling factors for TOPS mode SAR data focusing," IEEE Geosci. Remote. Sens. Lett., Vol. 8, No. 5, 929-933, Sep. 2011.
doi:10.1109/LGRS.2011.2135837 Google Scholar
11. Currie, A. and M. A. Brown, "Wide-swath SAR," Proc. Inst. Electr. Eng. F --- Radar Signal Process., Vol. 139, No. 2, 122-135, Apr. 1992.
doi:10.1049/ip-f-2.1992.0016 Google Scholar
12. Gebert, N., G. Krieger, and A. Moreira, "Multi-channel ScanSAR for high-resolution ultra-wide-swath imaging," Proc. EUSAR, Friedrichshafen, Germany, 2008. Google Scholar
13. Gebert, N., G. Krieger, M. Younis, F. Bordoni, and A. Moreira, "Ultra wide swath imaging with multi-channel ScanSAR," Proc. IEEE IGARSS, 21-24, Boston, MA, Jul. 2008. Google Scholar
14. Gebert, N., G. Krieger, and A. Moreira, "Multichannel azimuth processing in ScanSAR and TOPS mode operation," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 7, 564-592, Jul. 2010.
doi:10.2528/PIER11121101 Google Scholar
15. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER12021307 Google Scholar
16. Li, J., S. Zhang, and J. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER11030209 Google Scholar
17. Xu, W., P. P. Huang, and Y.-K. Deng, "MIMO-tops mode for high-resolution ultra-wide-swath full polarimetric imaging," Progress In Electromagnetics Research, Vol. 121, 19-37, 2011.
doi:10.2528/PIER11030209 Google Scholar
18. Xu, W., P. Huang, and Y.-K. Deng, "Multi-channel SPCMB-tops SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.
doi:10.1109/TGRS.2007.905974 Google Scholar
19. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 1, 31-46, Jan. 2008.
doi:10.1109/TGRS.2007.905974 Google Scholar
20. Krieger, G., N. Gebert, M. Younis, F. Bordoni, A. Patyuchenko, and A. Moreira, "Advanced concepts for ultra-wide-swath SAR imaging with high azimuth resolution," Proc. EUSAR, Friedrichshafen, Germany, 2008.
doi:10.1109/LGRS.2004.832700 Google Scholar
21. Krieger, G., N. Gebert, and A. Moreira, "Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 4, 260-264, Oct. 2004.
doi:10.1109/LGRS.2004.832700 Google Scholar
22. Gebert, N., G. Krieger, and A. Moreira, "High resolution wide swath SAR imaging with digital beamforming --- Performance analysis, optimization and system design," Proc. EUSAR, Dresden, Germany, 2006.
doi:10.1109/TAES.2009.5089542 Google Scholar
23. Gebert, N., G. Krieger, and A. Moreira, "Digital beamforming on receive: Techniques and optimization strategies for high-resolution wideswath SAR imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 54, No. 2, 564-592, Apr. 2009.
doi:10.1109/LGRS.2004.840610 Google Scholar
24. Li, Z., H.Wang, T. Su, and Z. Bao, "Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems," IEEE Geosci. Remote. Sens. Lett., Vol. 2, No. 1, 82-86, Jan. 2005.
doi:10.1109/LGRS.2004.840610 Google Scholar