1. Chew, , W. C., , "Electromagnetic theory on a lattice," Journal of Applied Physics, Vol. 75, No. 10, 4843-4850, 1994.
doi:10.1063/1.355770 Google Scholar
2. Clemens, , M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103 Google Scholar
3. Schuhmann, , R., T. Weiland, and , "Conservation of discrete energy and related laws in the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 301-316, 2001.
doi:10.2528/PIER00080112 Google Scholar
4. Bossavit, , A., Progress In Electromagnetics Research, and , "`Generalized finite differences' in computational electromagnetics,", Vol. 32, 45-64, 2001.
doi:10.2528/PIER00080102 Google Scholar
5. Teixeira, F. L., "Geometric aspects of the simplicial discretization of Maxwell's equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107 Google Scholar
6. Vazquez, , J., C. G. Parini, and , "Discrete Green's function formulation of FDTD method for electromagnetic modelling," Electron. Lett., Vol. 35, No. 7, 554-555, 1999.
doi:10.1049/el:19990416 Google Scholar
7. Holtzman, , R., R. Kastner, and , "The time-domain discrete Green's function method (GFM) characterizing the FDTD grid boundary," IEEE Trans. Antennas Propag., , Vol. 49, No. 7, 1079-1093, 2001.
doi:10.1109/8.933488 Google Scholar
8. Holtzman, , R, R. Kastner, E. Heyman, and R. W. Ziolkowski, "Stability analysis of the Green's function method (GFM) used as an ABC for arbitrarily shaped boundaries," IEEE Trans. Antennas Propag., Vol. 50, No. 7, 1017-1029, 2002.
doi:10.1109/TAP.2002.802272 Google Scholar
9. Jeng, S.-K., "An analytical expression for 3-D dyadic FDTD-compatible Green's function in infinite free space via z-transform and partial di®erence operators," IEEE Trans. Antennas Propag.,, Vol. 59, No. 4, 1347-1355, 2011.
doi:10.1109/TAP.2011.2109363 Google Scholar
10. Vazquez, , J., C. G. Parini, and , "Antenna modelling using discrete Green's function formulation of FDTD method," Electron. Lett.,, Vol. 35, No. 13, 1033-1034, 1999.
doi:10.1049/el:19990741 Google Scholar
11. Ma, W., M. R. Rayner, and C. G. Parini, "Discrete Green's function formulation of the FDTD method and its application in antenna modeling," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 339-346, 2005.
doi:10.1109/TAP.2004.838797 Google Scholar
12. Holtzman, , R, R. Kastner, E. Heyman, and R. W. Ziolkowski, "Ultra-wideband cylindrical antenna design using the Green's function method (GFM) as an absorbing boundary condition (ABC) and the radiated ¯eld propagator in a genetic optimization ," Microw. Opt. Tech. Lett., Vol. 48, No. 2, 348-354, 2006.
doi:10.1002/mop.21346 Google Scholar
13. De Hon, B. P., J. M. Arnold, and , "Stable FDTD on disjoint domains --- A discrete Green's function diakoptics approach," Proc. The 2nd European Conf. on Antennas and Propag., 1-6, 2007. Google Scholar
14. Malevsky, , S., E. Heyman, and R. Kastner, "Source decomposition as a diakoptic boundary condition in FDTD with reflecting external regions," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3602-3609, 2010.
doi:10.1109/TAP.2010.2052577 Google Scholar
15. Schneider, J. B., K. Abdijalilov, and , "Analytic fleld propagation TFSF boundary for FDTD problems involving planar interfaces: PECs, TE, and TM," IEEE Trans. Antennas Propag., Vol. 54, No. 9, 2531-2542, 2006.
doi:10.1109/TAP.2006.880757 Google Scholar
16. Stefanski, , T. P., "Fast implementation of FDTD-compatible Green's function on multicore processor," IEEE Antennas Wireless Propag. Lett., Vol. 11, 81-84, 2012.
doi:10.1109/LAWP.2012.2183632 Google Scholar
17. Stefanski, T. P. and K. Krzyzanowska, "Implementation of FDTD-compatible Green's function on graphics processing unit," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1422-1425, 2012.
doi:10.1109/LAWP.2012.2229380 Google Scholar
18. Sypek, , P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Trans. Magn., Vol. 45, No. 3, 1324-1327, 2009.
doi:10.1109/TMAG.2009.2012614 Google Scholar
19. Toivanen, , J. I., T. P. Stefanski, N. Kuster, and N. Chavannes, "Comparison of CPML implementations for the GPU-accelerated FDTD solver ," Progress In Electromagnetics Research M,, Vol. 19, 61-75, 2011.
doi:10.2528/PIERM11061002 Google Scholar
20. Tay, , W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated funda-mental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010 .
doi:10.2528/PIERM10090605 Google Scholar
21. Stefanski, T. P. and Acceleration of the 3D, "Acceleration of the 3D ADI-FDTD method using graphics processor units," IEEE MTT-S International Microwave Symposium Digest, 241-244, 2009. Google Scholar
22. Xu, , K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606 Google Scholar
23. Shahmansouri, , A., B. Rashidian, and , "GPU implementation of split-field finite-difference time-domain method for Drude-Lorentz dispersive media," Progress In Electromagnetics Research , Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505 Google Scholar
24. Zainud-Deen, , S. H., E. El-Deen, and , "Electromagnetic scattering using GPU-based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009..
doi:10.2528/PIERB09060703 Google Scholar
25. Demir, , V., "Graphics processor unit (GPU) acceleration of finite-difference frequency-domain (FDFD) method," Progress In Electromagnetics Research M, Vol. 23, 29-51, 2012.
doi:10.2528/PIERM11090909 Google Scholar
26. Dziekonski, , A., A. Lamecki, and M. Mrozowski, "GPU acceleration of multilevel solvers for analysis of microwave components with finite element method," IEEE Microw. Wireless Comp. Lett., Vol. 21, No. 1, 1-3, 2011.
doi:10.1109/LMWC.2010.2089974 Google Scholar
27. Dziekonski, , A., A. Lamecki, and M. Mrozowski, , "Tuning a hybrid GPU-CPU V-cycle multilevel preconditioner for solving large real and complex systems of FEM equations," IEEE Antennas Wireless Propag. Lett., Vol. 10, 619-622, 2011.
doi:10.1109/LAWP.2011.2159769 Google Scholar
28. Dziekonski, , A., P. Sypek, A. Lamecki, and M. Mrozowski, "Finite element matrix generation on a GPU," Progress In Electromagnetics Research, Vol. 249, 249-265, 2012. Google Scholar
29. Dziekonski, A., A. Lamecki, and M. Mrozowski, "A memory e±cient and fast sparse matrix vector product on a GPU," Progress In Electromagnetics Research, Vol. 116, 49-63, 2011. Google Scholar
30. Peng, , S., Z. Nie, and , "Acceleration of the method of moments calculations by using graphics processing units," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2130-2133, 2008..
doi:10.1109/TAP.2008.924768 Google Scholar
31. Xu, , K., D. Z. Ding, Z. H. Fan, and R. S. Chen, "Multilevel fast multipole algorithm enhanced by GPU parallel technique for electromagnetic scattering problems," Microw. Opt. Technol. Lett., Vol. 52, No. 3, 502-507, 2010.
doi:10.1002/mop.24963 Google Scholar
32. Lopez-Fernandez, J. A., M. Lopez-Portugues, Y. Alvarez-Lopez, C. Garcia-Gonzalez, D. Martinez, and F. Las-Heras, "Fast antenna characterization using the sources reconstruction method on graphics processors," Progress In Electromagnetics Research , Vol. 126, 185-201, , 2012.
doi:10.2528/PIER11121408 Google Scholar
33. Gao, , P. C., Y. B. Tao, Z. H. Bai, and H. Lin, , "Mapping the SBR and TW-ILDCs to heterogeneous CPU-GPU architecture for fast computation of electromagnetic scattering," Progress In Electromagnetics Research, Vol. 122, 137-154, 2012. Google Scholar
34. Granlund, , T., "The multiple precision integers and ratio-nals library," Edition 2.2.1, GMP Development Team, 2010.
doi:http://www.mpir.org. Google Scholar
35. Nakayama, , T., D. Takahashi, and , "Implementation of multiple-precision floating-point arithmetic library for GPU computing," Proc. 23rd IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS), 343-349, , 2011. Google Scholar
36. OpenMP Architecture Review Board, "OpenMP application program interface," Version 3.1, 2011.
doi:www.openmp.org. Google Scholar
37. Nvidia, "CUDA C programming guide," Version 4.2,.
doi:http://developer.nvidia.com/cuda/nvidia-gpu-computing-docum-enta Google Scholar
38. Harris, , M., "Optimizing parallel reduction in CUDA," NVIDIA.
doi:http://developer.download.nvidia.com/co-mpute/cuda/1.1-Beta/x86 Google Scholar
39. Shen, , W., D. Wei, W. Xu, X. Zhu, and S. Yuan, "Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU ," Computer Methods and Programs in Biomedicine,, Vol. 100, No. 1, 87-96, 2010 .
doi:10.1016/j.cmpb.2010.06.015 Google Scholar