1. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, Aug. 1998.
2. Barkas, S. N., An introduction to fast poisson solvers, 2005, http://people.freebsd.org/ snb/school/fastpoisson.pdf.
3. Fogolari, F., A. Brigo, and H. Molinari, "The poissonboltzmann equation for biomolecular electrostatics: A tool for structural biology," Journal of Molecular Recognition, Vol. 15, No. 6, 377-392, 2002.
doi:10.1002/jmr.577 Google Scholar
4. Adelmann, A., P. Arbenz, and Y. Ineichen, "A fast parallel poisson solver on irregular domains applied to beam dynamics simulations," Journal of Computational Physics, Vol. 229, No. 12, 4554-4566, 2010.
doi:10.1016/j.jcp.2010.02.022 Google Scholar
5. Lai, M. and W. Wang, "Fast direct solvers for poisson equation on 2D polar and spherical geometries," Numerical Methods for Partial Differential Equations, Vol. 18, No. 1, 56-68, Jan. 2002.
doi:10.1002/num.1038 Google Scholar
6. Huang, Y.-L., J.-G. Liu, and W.-C. Wang, "An FFT based ast poisson solver on spherical shells," Communications in Computational Physics, Vol. 9, No. 3, SI, 649-667, Mar. 2011. Google Scholar
7. Trottenberg, U., C. W. Oosterlee, and A. Schller, Multigrid, Academic Press, 2001.
8. Fulton, S. R., P. E. Ciesielski, and W. H. Schubert, "Multigrid methods for elliptic problems: A review," Monthly Weather Review, Vol. 14, 943-959, May 1986.
doi:10.1175/1520-0493(1986)114<0943:MMFEPA>2.0.CO;2 Google Scholar
9. Briggs, L., V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, Philadelphia, 2000.
10. McAdams, A., E. Sifakis, and J. Teran, "A parallel multigrid Poisson solver for fluids simulation on large grids," ACM SIGGRAPH Symposium on Computer Animation, 2010.
11. McKenney, A., L. Greengard, and A. Mayo, "A fast poisson solver for complex geometries," Journal of Computational Physics, Vol. 118, No. 2, 348-355, 1995.
doi:10.1006/jcph.1995.1104 Google Scholar
12. Ethridge, F. and L. Greengard, "A new fast-multipole accelerated poisson solver in two dimensions,", Vol. 23, No. 3, 741-760, 2001. Google Scholar
13. Langston, M. H., L. Greengard, and D. Zorin, "A free-space adaptive FMM-based PDE solver in three dimensions," Communications in Applied Mathematics and Computational Science, Vol. 6, No. 1, 79-122, 2011.
doi:10.2140/camcos.2011.6.79 Google Scholar
14. Greengard, L. and J.-Y. Lee, "A direct adaptive Poisson solver of arbitrary order accuracy," Journal of Computational Physics, Vol. 125, No. 2, 415-424, 1996.
doi:10.1006/jcph.1996.0103 Google Scholar
15. Wilton, D. R. and A. W. Glisson, "On improving the electric field integral equation at low frequencies," 1981 Spring URSI Radio Science Meeting Digest, 24 Los Angeles, CA, Jun. 1981.
16. Mautz, J. and R. Harrington, "An E-field solution for a conducting surface small or comparable to the wavelength," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 4, 330-339, Apr. 1984.
doi:10.1109/TAP.1984.1143316 Google Scholar
17. Zhao, J.-S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies ," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1635-1645, Oct. 2000.
doi:10.1109/8.899680 Google Scholar
18. Wu, W., A. W. Glisson, and D. Kajfez, "A comparison of two low-frequency formulations for the electric field integral equation," Tenth Ann. Rev. Prog. Appl. Comput. Electromag., Vol. 2, 484-491, 1994. Google Scholar
19. Burton, M. and S. Kashyap, "A study of a recent, moment-method algorithm that is accurate to very low frequencies," Appl. Comput. Electromagn. Soc. J., Vol. 10, No. 3, 58-68, Nov. 1995. Google Scholar
20. Bladel, J. G. V., Electromagnetic Fields, Wiley-IEEE Press, Jun. 2007.
21. Chew, W. C., M. S. Tong, and B. Hu, Integral Equations Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, 2008.
22. Vipiana, F., P. Pirinoli, and G. Vecchi, "A multiresolution method of moments for triangular meshes," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2247-2258, Jul. 2005.
doi:10.1109/TAP.2005.850710 Google Scholar
23. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems," SIAM J. on Scientific Computing, Vol. 13, 631-644, 1992. Google Scholar
24. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Ed., Society for Industrial and Applied Mathematics, 2003.
25. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residue algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, 1986. Google Scholar