Vol. 135
Latest Volume
All Volumes
Temporal Modulation of Light Intensity via 1D Time-Variant Photonic Crystal Structure
Progress In Electromagnetics Research, Vol. 135, 627-639, 2013
In this work, we show that light intensity modulation can be realized in the system of one-dimensional time-variant photonic crystals. Different from conventional light modulators, the functioning of the proposed structure emphasizes on its spatial/temporal structures instead of inherent material properties. Additionally, our system can perform inherent light modulation without introducing external stimuli, thus avoiding direct contacts with electrodes (or other modulation sources), which would be preferable in certain environments. The influences of parameters such as light frequency, structure dimensions, and refractive index contrasts on the modulation performance of the time-variant photonic crystal were investigated by numerical simulations. The results provide a new strategy for light modulation, which may add functionalities in optical communication, integrated-optics or display technologies.
Zehui Yong, Zefeng Chen, Yihang Chen, Chi Wah Leung, Helen Lai Wa Chan, Bo Li, and Yu Wang, "Temporal Modulation of Light Intensity via 1D Time-Variant Photonic Crystal Structure," Progress In Electromagnetics Research, Vol. 135, 627-639, 2013.

1. Gopalakrishnan, , G. K., W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, "Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators ," J. Lightwave Technol., Vol. 12, 1807-1819, 1994.

2. Shi, , Y., C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science, Vol. 288, 119-122, 2000.

3. Enami, Y., C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambaria, "N. Peyghambarian, Hybrid polymersol-gel waveguide modulators with exceptionally large electro-optic coeffcients," Nat. Photon., Vol. 1, 180-185, 2007.

4. Lu, , K., B. E. A. Saleh, and , "Theory and design of the liquid crystal TV as an optical spatial phase modulator," Opt. Eng., Vol. 29, 240-246, 1990.

5. Weiner, , A. M., D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron., Vol. 28, 908-920, 1992..

6. Zucker, , J. E., K. L. Jones, B. I. Miller, and U. Koren, "Miniature Mach-Zehnder InGaAsP quantum well waveguide interferometers for 1.3 um," IEEE Photon. Technol. Lett., Vol. 2, 32-34, 1990.

7. Fetterman, , M., C.-P. Chao, and S. R. Forrest, "Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55-um wavelength ," IEEE Photon. Technol.Lett., Vol. 8, 69-71, 1996..

8. Liu, , A., R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, , "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, Vol. 427, 615-618, 2004..

9. Xu, , Q., B. Schimidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature, Vol. 435, 325-327, 2005.

10. Rhodes, , W. T., , "Acousto-optic signal processing: Convolution and correlation," Proc. IEEE, Vol. 69, 65-79, 1981..

11. Dugan, , M. A., J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B, Vol. 14, 2348-2358, 1997.

12. Ross, , W. E., D. Psaltis, and R. H. Anderson, , "Two-dimensional magneto-optic spatial light modulator for signal processing," Opt. Eng., Vol. 22, 485-490, 1983..