Vol. 136
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-28
The Serial Resonant Antenna for the Large Field of View Magnetic Resonance Imaging
By
Progress In Electromagnetics Research, Vol. 136, 635-646, 2013
Abstract
A serial resonant antenna for the large field of view (FOV) magnetic resonance imaging (MRI) is presented. It consists of metallic patches cascaded through lumped capacitors in serial on the top layer of a grounded dielectric substrate. The theoretical analysis show that at the resonant frequency, uniformly distributed current with zero phase delay is produced independent of the antenna length, hence a uniform magnetic field for large FOV MRI can be achieved. Integrated with the L-shaped tunable matching network, the antenna can be tuned easily to operate rigorously at the working frequency of the MRI system. The numerical modeling, physical fabrication and measurement, as well as the phantom imaging are carried out to design, characterize and verify the performance of the proposed antenna for MRI.
Citation
Bo O. Zhu Ed Xuekui Wu Patrick Peng Gao Peng Cao Li Jun Jiang , "The Serial Resonant Antenna for the Large Field of View Magnetic Resonance Imaging," Progress In Electromagnetics Research, Vol. 136, 635-646, 2013.
doi:10.2528/PIER12112612
http://www.jpier.org/PIER/pier.php?paper=12112612
References

1. Jin, J., Electromagnetic Analysis and Design in Magnetic Resonance Imaging, CRC Press, 1988.

2. Chen, C. N., V. J. Sank, S. M. Cohen, and D. I. Hoult, "The field dependence of NMR imaging. I. Laboratory assessment of signal-to-noise ratio and power deposition," Magn. Reson. Med., Vol. 3, No. 5, 722-729, 1986.
doi:10.1002/mrm.1910030508

3. Robitaille, P. M., A. M. Abduljalil, A. Kangarlu, X. Zhang, Y. Yu, R. Burgess, S. Bair, P. Noa, L. Yang, H. Zhu, B. Palmer, Z. Jiang, D. M. Chakere, and D. Spigos, "Human magnetic resonance maging at 8 T," NMR Biomed., Vol. 11, No. 6, 263-265, 1998.
doi:10.1002/(SICI)1099-1492(199810)11:6<263::AID-NBM549>3.0.CO;2-0

4. Ugurbil, K., M. Garwood, J. Ellermann, K. Hendrich, R. Hinke, X. Hu, S. G. Kim, R. Menon, H. Merkle, and S. Ogawa, "Imaging at high magnetic fields: Initial experiences at 4 T," Magn. Reson. Q., Vol. 9, No. 4, 259-277, 1993.

5. Ugurbil, K., X. Hu, W. Chen, X. H. Zhu, S. G. Kim, and A. Georgopoulos, "Functional mapping in the human brain using high magnetic fields," Philos. Trans. R. Soc. Lond. B Biol. Sci., Vol. 354, No. 1387, 1195-213, 1999.
doi:10.1098/rstb.1999.0474

6. Pang, Y., Z. Xie, D. Xu, D. A. Kelley, S. J. Nelson, D. B. Vigneron, and X. Zhang, "A dual-tuned quadrature volume coil with mixed λ/2 and λ/4 microstrip resonators for multinuclear MRSI at 7 T," Magn. Reson. Imaging, Vol. 30, 290-298, 2012.
doi:10.1016/j.mri.2011.09.022

7. Zhang, X., K. Ugrubil, R. Sainati, and W. Chen, "An inverted-microstrip resonator for human head proton MR imaging at 7Tesla," IEEE Trans Biomed Eng., Vol. 52, No. 3, 495-504, 2005.
doi:10.1109/TBME.2004.842968

8. Vaughan, J. T., M. Garwood, C. M. Collins, W. Liu, L. DelaBarre, G. Adriany, P. Andersen, H. Merkle, R. Goebel, M. B. Smith, and K. Ugurbil, "7T vs. 4 T: RF power, homogeneity, and signal-to-noise comparison in head images," Magn. Reson. Med., Vol. 46, No. 1, 24-30, 2001.
doi:10.1002/mrm.1156

9. Hayes, C. E., W. A. Edelstein, J. F. Schenck, O. M. Mueller, and M. Eash, "An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T ," J. Magn. Resonance, Vol. 63, 622-628, 1985.

10. Röschmann, P., High-frequency coil system for a magnetic resonance imaging apparatus, U.S. Patent 4 746 866, May 24, 1988.

11. Bridges, J. F., Cavity resonator with improved magnetic field uniformity for high frequency operation and reduced dielectric heating in NMR imaging devices, U.S. Patent 4 751 464, Jun. 14, 1988.

12. Vaughan, J. T., H. P. Hetherington, J. O. Otu, J. W. Pan, and G. M. Pohost, "High frequency volume coils for clinical NMR imaging and spectroscopy," Magn. Reson. Med., Vol. 32, 206-218, 1994.
doi:10.1002/mrm.1910320209

13. Röschmann, P., "Radiofrequency penetration and absorption in the human body: Limitations to high-field whole-body nuclear magnetic resonance imaging," Med. Phys., Vol. 14, No. 6, 922-932, Nov.-Dec. 1987.
doi:10.1118/1.595995

14. Pang, Y., Z. Xie, Y. Li, D. Xu, D. Vigneron, and X. Zhang, "Resonant mode reduction in radiofrequency volume coils for ultrahigh field magnetic resonance imaging," Materials, Vol. 4, 1333-1344, 2011.
doi:10.3390/ma4081333

15. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402

16. Freire, M. J., L. Jelinek, R. Marques, and M. Lapine, "On the application of μr=-1 metamaterial lenses for magnetic resonance imaging," J. Magn. Reson., Vol. 203, 81-90, 2010.
doi:10.1016/j.jmr.2009.12.005

17. Rennings, A., J. Mosig, A. Bahr, C. Caloz, M. E. Ladd, and D. Erni, "A CRLH metamaterial based RF coil element for magnetic resonance imaging at 7Tesla," Proc. 3rd European Conference on Antennas and Propagation (EuCAP), 3231-3234, Berlin, Germany, Mar. 2009.

18. Rennings, A., P. Schneider, C. Caloz, and S. Orzada, "Preliminary experiments on a CRLH metamaterial zeroth-order resonant coil (ZORC) element for 7Tesla MRI applications with large field of view," Proc. 3rd International Congress on Advanced Electromagnetic Materials in Microwwaes and Optics, 128-136, London, British, Sep. 2009.

19. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley and Sons Inc., New York, 2005.

20. Mispelter, J., M. Lupu, and A. Briguet, NMR Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles and Practical Guidelines, Imperial College Press, London, 2006.