Vol. 136
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-20
Threshold-Based Resampling for High-Speed Particle PHD Filter
By
Progress In Electromagnetics Research, Vol. 136, 369-383, 2013
Abstract
In recent years, particle probability hypothesis density (PHD) filtering has become an active research topic for multiple targets tracking in dense clutter scenarios. However, it is highly required to improve the real-time performance of particle PHD filtering because it is a kind of Monte Carlo approach and the computational complexity is very high. One of major difficulties to improve the real-time performance of particle PHD filtering lies in that, resampling, which is usually a sequential process, is crucial to the fully-parallel implementation of particle PHD filter. To overcome this difficulty, this paper presents a novel threshold-based resampling scheme for the particle PHD filter, in which the particle weights are all set below a proper threshold. This specific threshold is determined using a distinguishing feature of the particle PHD filters: The weight sum of all particles in weight update is equal to the total target number in the current iteration. This proposed resampling scheme allows the use of fully-pipelined architecture in the hardware design of particle PHD filter. Theoretical analysis indicates that the particle PHD filter employing the proposed resampling technique can reduce the time complexity by 33% around in a typical multi-target tracking (MTT) scenario compared with that employing the traditional systematic resampling technique, while simulation results show that it can maintain the almost same performance of estimation accuracy.
Citation
Zhi-Guo Shi Yunmei Zheng Xiaomeng Bian Zhengde Yu , "Threshold-Based Resampling for High-Speed Particle PHD Filter," Progress In Electromagnetics Research, Vol. 136, 369-383, 2013.
doi:10.2528/PIER12120406
http://www.jpier.org/PIER/pier.php?paper=12120406
References

1. Liu, H. Q. and H. C. So, "Target tracking with line-of-sight identification in sensor networks under unknown measurement noises," Progress In Electromagnetics Research, Vol. 97, 373-389, 2009.
doi:10.2528/PIER09090701

2. Chang, Y., C. Chiang, and K. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

3. Fan, L., X. Zhang, and L.Wei, "Tbd algorithm based on improved randomized hough transform for dim target detection," Progress In Electromagnetics Research C, Vol. 31, 271-285, 2012.

4. Lee, J., S. Cho, S. Park, and K. Kim, "Performance analysis of radar target recognition using natural frequency: Frequency domain approach ," Progress In Electromagnetics Research, Vol. 132, 315-345, 2012.

5. Diao, W., X. Mao, H. Zheng, Y. Xue, and V. Gui, "Image sequence measures for automatic target tracking," Progress In Electromagnetics Research, Vol. 130, 447-472, 2012.

6. Tugac, S. and M. Efe, "Radar target detection using hidden Markov models," Progress In Electromagnetics Research B, Vol. 44, 241-259, 2012.

7. Zhang, Z. and J. Zhou, "A novel LPI method of radar's energy control," Progress In Electromagnetics Research C, Vol. 33, 81-94, 2012.

8. Fouda, A. and F. Teixeira, "Imaging and tracking of targets in clutter using differential time-reversal techniques," Waves in Random and Complex Media, Vol. 22, No. 1, 66-108, 2012.
doi:10.1080/17455030.2011.557404

9. Bar-Shalom, Y., T. Kirubarajan, and X. R. Li, "Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software," Wiley, New York, 2001.

10. Mahler, R., "Multitarget Bayes filtering via first-order multitarget moments," IEEE Transactions on Aerospace and Electronic Systems , Vol. 39, No. 4, 1152-1178, 2003.
doi:10.1109/TAES.2003.1261119

11. Ristic, B., D. Clark, B. N. Vo, and B. T. Vo, "Adaptive target birth intensity for phd and cphd filters," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1656-1668, 2012.
doi:10.1109/TAES.2012.6178085

12. Hong, S. H., L. Wang, Z. G. Shi, and K. S. Chen, "Simplified particle PHD filter for multiple target tracking: Algorithm and architecture," Progress In Electromagnetics Research, Vol. 120, 481-498, 2011.

13. Wang, X. F., J. F. Chen, Z. G. Shi, and K. S. Chen, "Fuzzy-control based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 118, 1-15, 2011.
doi:10.2528/PIER11051907

14. Hong, S. H., Z. G. Shi, J. M. Chen, and K. S. Chen, "A low-power memory-efficient resampling architecture for particle filters," Circuits, Systems and Signal Processing, Vol. 29, No. 1, 155-167, 2010.
doi:10.1007/s00034-009-9117-4

15. Li, Y., Y. J. Gu, Z. G. Shi, and K. S. Chen, "Robust adaptive beamforming based on particle filter with noise unknown," Progress In Electromagnetics Research, Vol. 90, 151-169, 2009.
doi:10.2528/PIER09010302

16. Chen, J. F., Z. G. Shi, S. H. Hong, and K. S. Chen, "Grey prediction based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 93, 237-254, 2009.
doi:10.2528/PIER09042204

17. Zheng, N., Y. Pan, X. Yan, and R. Huan, "Local weight mean comparison scheme and architecture for high-speed particle filters," Electronic Letters, Vol. 47, No. 2, 2011.

18. Wang, Q., J. Li, M. Zhang, and C. Yang, "H-infinity filter based particle filter for maneuvering target tracking," Progress In Electromagnetics Research B, Vol. 30, 103-116, 2011.

19. Miao, L., J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola, "Algorithm and parallel implementation of particle filtering and its use in waveform-agile sensing ," Journal of Signal Processing Systems, Vol. 65, No. 2, 211-227, 2011.
doi:10.1007/s11265-011-0601-2

20. Bolic, M., P. M. Djuric, and S. Hong, "New resampling algorithms for particle filters," IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP'03), Vol. 2, 589-592, 2003.

21. Fan, J., Y. Zhu, S. Fan, H. Fan, and Q. Fu, "Feature aided switching model set approach for maneuvering target tracking," Progress In Electromagnetics Research B, Vol. 45, 251-268, 2012.

22. Bolic, M., P. Djuric, and S. Hong, "Resampling algorithms for particle filters: A computational complexity perspective," Eurasip J. Appl. Signal Process., Vol. 15, 2267-2277, 2004.

23. Wang, J., H. Wang, Y. Qin, and Z. Zhuang, "Efficient adaptive detection threshold optimization for tracking maneuvering targets in clutter," Progress In Electromagnetics Research B, Vol. 41, 357-375, 2012.

24. Schuhmacher, D., B. T. Vo, and B. N. Vo, "A consistent metric for performance evaluation of multi-object filters," IEEE Transactions on Signal Processing, Vol. 56, 3447-3457, 2008.
doi:10.1109/TSP.2008.920469

25. Hoffman, J. and R. Mahler, "Multitarget miss distance via optimal assignment," IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 34, No. 3, 327-336, 2004.
doi:10.1109/TSMCA.2004.824848