Vol. 136
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-01
A Multi-GPU Sources Reconstruction Method for Imaging Applications
By
Progress In Electromagnetics Research, Vol. 136, 703-724, 2013
Abstract
A profile reconstruction method using a surface inverse currents technique implemented on GPU is presented. The method makes use of the internal fields radiated by an equivalent currents distribution retrieved from scattered field information that is collected from multiple incident fields. Its main advantage over other inverse source-based techniques is the use of surface formulation for the inverse problem, which reduces the problem dimensionality thus decreasing the computational cost. In addition, the GPU implementation drastically reduces the calculation time, enabling the development of real time and accurate geometry reconstruction at a low cost.
Citation
Miguel Lopez-Portugues, Yuri Alvarez-Lopez, Jesus A. Lopez-Fernandez, Cebrian Garcia-Gonzalez, Rafael Ayestaran, and Fernando Las Heras Andres, "A Multi-GPU Sources Reconstruction Method for Imaging Applications," Progress In Electromagnetics Research, Vol. 136, 703-724, 2013.
doi:10.2528/PIER12122104
References

1. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.

2. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

3. Lin, C. Y. and Y. W. Kiang, "Inverse scattering for conductors by the equivalent source method," IEEE Trans. Antennas Propag., Vol. 44, No. 3, 310-316, 1996.
doi:10.1109/8.486298

4. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Two-dimensional microwave imaging by a numerical inverse scattering solution," IEEE Trans. Microw. Theory Techn., Vol. 38, No. 8, 981-989, 1990.
doi:10.1109/22.57321

5. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

6. Devaney, A. J. and G. C. Sherman, "Nonuniqueness in inverse source and scattering problems," IEEE Trans. Antennas Propag., Vol. 30, No. 5, 1034-1037, 1982.
doi:10.1109/TAP.1982.1142902

7. Álvarez, Y., B. A. Casas, C. García, and F. Las-Heras, "Geometry reconstruction of metallic bodies using the sources reconstruction method ," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1197-1200, 2010.
doi:10.1109/LAWP.2010.2098385

8. Çayören, M., I. Akduman, A. Yapar, and L. Crocco, "A new algorithm for the shape reconstruction of perfectly conducting objects," Inverse Problems, Vol. 23, No. 3, 1087-1100, 2007.
doi:10.1088/0266-5611/23/3/015

9. Farmahini-Farahani, M., R. Faraji-Dana, and M. Shahabadi, "Fast and accurate cascaded particle swarm gradient optimization method for solving 2-D inverse scattering problems," Appl. Comput. Electrom., Vol. 24, No. 5, 511-517, 2009.

10. Qin, Y. M. and I. R. Ciric, "Inverse scattering solution with current modeling and Tikhonov regularization," Proc. IEEE Antennas Propag. Soc. Int. Symp., Ann Arbor, Michigan, USA, 1993.

11. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

12. Massa, A., D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, "Parallel GA-based approach for microwave imaging applications," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3118-3127, 2005.
doi:10.1109/TAP.2005.856311

13. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1386-1397, 2004.
doi:10.1109/TAP.2004.830254

14. Benedetti, M., M. Donelli, and A. Massa, "Multicrack detection in two-dimensional structures by means of GA-based strategies," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 205-215, 2007.
doi:10.1109/TAP.2006.888399

15. Álvarez, Y., B. González-Valdés, J. Ángel Martínez, F. Las-Heras, and C. M. Rappaport, "3D whole body imaging for detecting explosive-related threats," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4453-4458, 2012.
doi:10.1109/TAP.2012.2207068

16. Martínez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.
doi:10.2528/PIER11120518

17. Cooper, K. B., R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, "THz imaging radar for standoff personnel screening," IEEE Trans. THz Sci. Technol., Vol. 1, No. 1, 169-182, 2011.
doi:10.1109/TTHZ.2011.2159556

18. Álvarez, Y., J. A. Martínez, F. Las-Heras, and C. M. Rappaport, "An inverse fast multipole method for geometry reconstruction using scattered field information," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3351-3360, 2012.
doi:10.1109/TAP.2012.2196950

19. Zhang, Y. and T. Sarkar, Parallel Solution of Integral Equation-based EM Problems in the Frequency Domain, Wiley-IEEE Press, New Jersey, 2009.

20. Araújo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bértolo, L. Landesa, J. Rivero, and J. L. Rodríguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.
doi:10.2528/PIER09121007

21. Taboada, J. M., M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodríguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

22. NVIDIA Corporation, , Tesla Kepler GPU accelerators, 2012, Available online at: http://www.nvidia.com/content/tesla/pdf/T-esla-KSeries-Overview-LR.pdf.

23. Intel Corporation, , Intel Xeon processor E5-2600 series, 2012, A-vailable online at: http://download.intel.com/support/processors/xeon/sb/xeon E5-2600.pdf.

24. Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," Proc. IEEE, Vol. 5, No. 96, 879-899, 2008.
doi:10.1109/JPROC.2008.917757

25. López-Fernández, J. A., M. López-Portugués, Y. Álvarez, C. García, D. Martínez-Álvarez, and F. Las-Heras, "Fast antenna characterization using the sources reconstruction method on graphics processors," Progress In Electromagnetics Research, Vol. 126, 185-201, 2012.
doi:10.2528/PIER11121408

26. Álvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3460-3468, 2007.
doi:10.1109/TAP.2007.910316

27. Persson, K. and M. Gustafsson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome applications," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

28. Eibert, T. F. and C. H. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing Rao-Wilton-Glisson discretization of electric and magnetic surface currents," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1178-1185, 2009.
doi:10.1109/TAP.2009.2015828

29. Jorgensen, E., P. Meincke, C. Cappellin, and M. Sabbadini, "Improved source reconstruction technique for antenna diagnostics," Proc. 32nd ESA Antenna Workshop on Antennas for Space Applications , Noordwijk, Netherlands, 2010.

30. Cano, F., M. Sierra-Castaner, S. Burgos, and J. L. Besada, "Applications of sources reconstruction techniques: Theory and practical results," Proc. 4th Europ. Conf. Antennas Propag. (EuCAP), Barcelona, Spain, 2010.

31. Quijano, J. L. A. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309

32. Leonardo, J., J. L. A. Quijano, and G. Vecchi, "Removal of unwanted structural interactions from antenna measurements," IEEE Antennas Propag. Soc. Int. Symp., 2009.

33. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

34. Wang, H.-C. and K. Hwang, "Multicoloring of grid-structured PDE solvers on shared-memory multiprocessors," IEEE Trans. Parallel Distrib. Syst., Vol. 6, No. 11, 1195-1205, 1995.
doi:10.1109/71.476191

35. The OpenMP ARB, ``OpenMP," 2004, Available online at: www.openmp.org.

36. NVIDIA Corporation, ``NVIDIA CUDA C Programming Guide," 2012, Available online at: http://docs.nvidia.com/cuda/pdf/CU-DA C Programming Guide.pdf.

37. NVIDIA Corporation, NVIDIA's next generation CUDA compute architecture: Fermi, 2009, Available online at: http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi C-ompute Architecture Whitepaper.pdf.

38. NVIDIA Corporation, NVIDIA GeForce GTX 680, 2012, Available online at: http://www.geforce.com/Active/en US/en US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.

39. NVIDIA Corporation, CUDA Toolkit 4.2, 2012, Available online at: https://developer.nvidia.com/cuda-toolkit-42-archive.

40. Belkebir, K., A. Baussard, and D. Prémel, "Edge-preserving regularization scheme applied to the modified gradient method for the reconstruction of two-dimensional targets from laboratory-controlled data," Progress In Electromagnetics Research, Vol. 54, 1-17, 2005.
doi:10.2528/PIER04073003

41. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data --- Guest editors' introduction," Inverse Problems, Vol. 17, No. 6, 1565-1571, 2001, Available online at: http://iopscience.iop.org/0266-5611/17/6/301/media.
doi:10.1088/0266-5611/17/6/301