1. Sakran, , F., M. Golosovsky, H. Goldberger, D. Davidov, and A. Frenkel, "High-frequency eddy-current technique for thickness measurement of micron-thick conducting layers ," Appl. Phys. Lett., Vol. 78, No. 11, 1634-1636, 2001.
doi:10.1063/1.1355298 Google Scholar
2. Lantz, , M. A., S. P. Jarvis, and H. Tokumoto, "High resolution eddy current microscopy," Appl. Phys. Lett., Vol. 78, No. 3, 383-385, 200.
doi:10.1063/1.1339840 Google Scholar
3. Dodd, , C. V., W. E. Deeds, and , "Analytical solutions to eddy-current probe-coil problems," Journal of Applied Physics, Vol. 39, No. 6, 2829-2838, 1968.
doi:10.1063/1.1656680 Google Scholar
4. Uzal, E., J. H. Rose, and , "The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1869-1873, 1993.
doi:10.1109/20.250771 Google Scholar
5. Hugo, G. R., S. K. Burke, and , "Impedance changes in a coil due to a nearby small conducting sphere," Phys. D: Appl. Phys., Vol. 21, 33-38, 1988.
doi:10.1088/0022-3727/21/1/005 Google Scholar
6. Yin, , W. and A. J. Peyton, "Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors," NDT&E Int., Vol. 40, 43-48, 2007.
doi:10.1016/j.ndteint.2006.07.009 Google Scholar
7. Yin, , W. and A. J. Peyton., "Thickness measurement of metallic plates with an electromagnetic sensor using phase signature analysis," IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 8, 1803-1807, 2008.
doi:10.1109/TIM.2008.923777 Google Scholar
8. Tai, , C. C., "Characterization of coatings on magnetic metal using the swept-frequency eddy current method," Rev. Sci. Instrum.,, Vol. 71, No. 8, 3161-3167, 2000.
doi:10.1063/1.1304862 Google Scholar
9. Watson, , C. C., W. K. Chan, and , "High-spatial-resolution semiconductor characterization using a microwave eddy current probe," Appl. Phys. Lett., Vol. 78, No. 1, 129-131, 2001.
doi:10.1063/1.1337639 Google Scholar
10. Hamia, , R., C. Cordier, S. Saez, and C. P. Dolabdjian, "Eddy-current nondestructive testing using an improved GMR magnetometer and a single wire as inducer: A FEM performance analysis ," IEEE Transactions on Magnetics, Vol. 46, No. 10, 3731-3737, 2010.
doi:10.1109/TMAG.2010.2052827 Google Scholar
11. Zhao, , Q., Q. Yu, Z. L. Qu, L. Si, X. L. Lu, and Y. G. Meng, "Thickness measurement of nano-metallic film with electromagnetic sensor under large sensor-sample distance ," 2011 IEEE Instrumentation and Measurement Technology Conference,, 39-42, 2011. Google Scholar
12. Chen, , H. T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, , "Active terahertz metamaterials devices," Nature, Vol. 444, 597, 2006.
doi:10.1038/nature05343 Google Scholar
13. Valagiannopoulos, , C. A., , "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011. Google Scholar
14. Butt, , H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011. Google Scholar
15. Pendry, , J. B., , "Negative refraction makes a perfect lens," Phys. Rev. Lett., No. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
16. Yuan, Y., L. Ran, H. S. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Backward coupling waveguide coupler using left-handed material ," Appl. Phys. Lett., Vol. 88,-211903, , 2006. Google Scholar
17. Boyvat, , M., C. V. Hafner, and , "Molding the flow of magnetic ¯eld with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
doi:10.2528/PIER12022010 Google Scholar
18. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research,, Vol. 116, 409-423, 2011. Google Scholar
19. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, , Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461 Google Scholar
20. Chen, , H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011. Google Scholar
21. Shelby, , R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
22. Zhao, , Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., , Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402 Google Scholar
23. Smith, , D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
24. Pendry, , J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
25. Shao, , J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research,, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507 Google Scholar
26. Zhang, , J. and N. A. Mortensen, "Ultrathin cylindrical cloak," Progress In Electromagnetics Research, Vol. 121, 381-389, 2011. Google Scholar
27. Li, , J., H. Liu, and , "A class of polarization-invariant directional cloaks by concatenation via transformation optics," Progress In Electromagnetics Research, Vol. 123, 175-187, 2012. Google Scholar
28. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research,, Vol. 124, 151-162, 2012. Google Scholar
29. lo, , L., F. Jangal, M. Darces, J.-L. Montmagnon, and M. Helier, "Negative permittivity media able to propagate a surface wave," Progress In Electromagnetics Research, Vol. 115, 1-10, 2011. Google Scholar
31. Li, , Y. Y., G. D. Li, and , Ferrite Physics, , Science Press, , 1978.
32. Slama, J., R. Dosoudil, R. Vicen, A. Gruskova, V. Olah, I. Hudec, and E. Usak, , "Frequency dispersion of permeability in ferrite polymer composites," Journal of Magnetism and Magnetic Materials, Vol. 254{255, 195{197, 2003, Vol. 254-255, 195-197, 2003. Google Scholar