Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-14
A Dual-Frequency Method of Eliminating Liquid Water Radiation to Remotely Sense Cloudy Atmosphere by Ground-Based Microwave Radiometer
By
Progress In Electromagnetics Research, Vol. 138, 629-645, 2013
Abstract
Ground-based microwave radiometer is the main device to remotely sense atmosphere passively which can detect the water vapor density, temperature, integral water vapor, etc. Because of the influence of liquid water in cloud on the brightness temperature measured by microwave radiometer, the cloud needs to be modeled to retrieve the parameters of atmosphere. However, the difference between cloud model and actual cloud may bring on error in retrieval. Based on the relation between absorption coefficient of liquid water and frequency, a dual-frequency method of eliminating liquid water radiation which is not based on modeling cloud is put forward to retrieve the parameters of cloudy atmosphere. Historical radiosonde data are employed in the calculation of retrieval coefficients to profile the water vapor. The simulation and experiment results show that the dual-frequency method can eliminate the affection of liquid water effectively. So the error in modeling cloud can be avoided to improve the retrieval precision. The integral water vapor in cloudy atmosphere is also retrieved by the dual-frequency method, and the precision is almost the same with the method of modeling cloud.
Citation
Jiangman Li, Li-Xin Guo, Le-Ke Lin, Yiyang Zhao, Zhenwei Zhao, Tingting Shu, and Hengmin Han, "A Dual-Frequency Method of Eliminating Liquid Water Radiation to Remotely Sense Cloudy Atmosphere by Ground-Based Microwave Radiometer," Progress In Electromagnetics Research, Vol. 138, 629-645, 2013.
doi:10.2528/PIER13010201
References

1. Westwater, E. R. and M. T. Decker, "Application of statistical inversion to ground-based microwave remote sensing of temperature and water vapor profiles," Inversion Methods in Atmospheric Remote Sounding,, 395-427, 1977.

2. Westwater, , E. R., "The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry," Radio Science,, Vol. 13, 677-685, 1978.
doi:10.1029/RS013i004p00677

3. Bonafoni, S., F. Alimenti, G. Angelucci, and G. Tasselli, "Microwave radiometry imaging for forest fire detection: A simulation study," Progress In Electromagnetics Research, Vol. 112, 77-92, 2011.

4. Li, , S., X. Zhou, B. Ren, H.-J. Sun, and X. Lv, "A compressive sensing approach for synthetic aperture imaging radiometers," Progress In Electromagnetics Research, Vol. 135, 583-599, 2013.

5. Aluigi, , L., L. Roselli, S. M. White, and F. Alimenti, "System on-chip 36.8 GHz radiometer for space-based observation of solar °ares: Feasibility study in 0.25 ¹m SiGe BiCMOS technology," Progress In Electromagnetics Research, Vol. 130, 347-368, 2012.

6. Kim, , W.-G., N.-W. Moon, J. Kang, and Y.-H. Kim, "Loss measuring of large aperture quasi-optics for w-band imaging radiometer system," Progress In Electromagnetics Research, Vol. 125, 295-309, 2012.
doi:10.2528/PIER12010502

7. Marzano, , F. S., E. Fionda, P. Ciotti, and A. Martellucci, "Ground-based multifrequency microwave radiometry for rainfall remote sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 4, 742-759, April 2002.
doi:10.1109/TGRS.2002.1006317

8. Deuber, A. Haefele, D. G. Feist, L. Martin, N. Kampfer and G. E. Nedoluha, "Middle atmospheric water vapour radiometer (MIAWARA): Validation and first results of the LAPBIAT Upper Tropospheric Lower Stratospheric Water Vapour Validation Project (LAUTLOS-WAVVAP) campaign," Journal of Geophysical Research,, Vol. 10, No. D13306, 1-10, 2005.

9. Doran, , J. C., S. Zhong, J. C. Liljegren, and C. Jakob, "A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska," Journal of Geophysical Research, Vol. 107, No. D11, June 2002.
doi:10.1029/2001JD000819

10. Zhan, X., P. R. Houser, J. P.Walker, and W. T. Crow, "A method for retrieving high-resolution surface soil moisture from hydros L-band radiometer and radar observations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 6, 1534-1544, June 2006.
doi:10.1109/TGRS.2005.863319

11. Cimini, D., E. R. Westwater, Y. Han, and S. J. Keihm, "Accuracy of ground-based microwave radiometer and ballon-Borne measurements during the WVIOP2000 field experiment," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 11, 2605-2615, November 2003.
doi:10.1109/TGRS.2003.815673

12. Giamalaki, , M. I. and I. S. Karanasiou, "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research, Vol. 117, 253-265, 2011.

13. Oikonomou, , A., I. S. Karanasiou, and N. K. Uzunoglu, , "Phased-array near field radiometry for brain intracranial applications," Progress In Electromagnetics Research, Vol. 109, 345-360, 2010.
doi:10.2528/PIER10073004

14. Westwater, , E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov, "Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project," Journal of Geophysical Research,, Vol. 106, No. D23, 32019-32030, December 2001.
doi:10.1029/2000JD000055

15. Barbaliscia, , F., E. Fiona, and P. G. Masullo, "Ground-based radiometric measurements of atmospheric brightness temperature and water contents in Italy," Radio Science, Vol. 33, No. 3, 697-706, May 1998.
doi:10.1029/97RS02619

16. Cimini, D., F. Nasir, E. R. Westwater, V. H. Payne, and D. D. Turner, "Comparison of ground-based millimeter-wave observations and simulations in the Arctic winter," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 9, 3098-3106, 3098 2009.
doi:10.1109/TGRS.2009.2020743

17. Rarette, , P. E., E. R. Westwater, Y. Han, A. J. Gasiewski, and M. Klein, "Measurement of low amounts of precipitable water vapor using ground-based millimeterwave radiometry," Journal of Atmospheric and Oceanic Technology,, Vol. 22, 317-337, April 2005.

18. Cimini, , D., E. R. Westwater, and A. J. Gasiewski, "Temperature nd humidity profiling in the Arctic using ground-based millimeter-wave radiometry and 1 DVAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 3, 1381-1388, March 2010.
doi:10.1109/TGRS.2009.2030500

19. Ware, , R., P. Herzegh, F. Vandenberghe, J. Vivekanandan, and E. Westwater, "Ground-based radiometric profiling during dynamic weather conditions," Journal of Applied Meteorology,, 2003.

20. Zaharis, , Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
doi:10.2528/PIER12022806