1. Hambling, D., "Plasma stealth,", Vol. 168, No. 2264, 60-61, 2000. Google Scholar
2. Mao, L.-X., H. Zhang, and C.-X. Zhang, "Analysis on the reflection characteristic of electromagnetic wave incidence in closed non-magnetized plasma," Journal of Electromagnetic Waves and Applications, Vol. 22, 2285-2296, 2008. Google Scholar
3. Mao, L. X., H. Zhang, Z. Li, and C.-X. Zhang, "Analysis on the stealth characteristic of two dimensional cylinder plasma envelopes," Progress In Electromagnetics Research Letters, Vol. 13, 83-92, 2010. Google Scholar
4. Alexef, I., T. Anderson, and S. Parameswaran, "Experimental and theoretical results with plasma antennas," IEEE Transactions on Plasma Science, Vol. 34, No. 2, 166-172, 2006. Google Scholar
5. Wu, X. P., J.-M. Shi, Z. S. Chen, and B. Xu, "A new plasma antenna of beam-forming," Progress In Electromagnetics Research, Vol. 126, 539-553, 2012. Google Scholar
6. Kumar, V., M. Mishra, and N. K. Joshi, "Study of a Fluorescent tube as plasma antenna," Progress In Electromagnetics Research Letters, Vol. 24, 17-26, 2011. Google Scholar
7. Naz, M. Y., A. Ghaffar, N. U. Rehman, S. Naseer, and M. Zakaullah, "Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma," Progress In Electromagnetics Research, Vol. 114, 113-128, 2011. Google Scholar
8. Naz, M. Y., A. Ghaffar, N. U. Rehman, M. Azam, S. Shukrullah, A. Qayyum, and M. Zakaullah, "Symmetric and asymmetric double Langmuir probes characterization of radio frequency inductively coupled nitrogen plasma," Progress In Electromagnetics Research, Vol. 115, 207-221, 2011. Google Scholar
9. Wu, C.-J., T.-J. Yang, C. C. Li, and P. Y. Wu, "Investigation of effective plasma frequencies in one-dimensional plasma photonic crystals," Progress In Electromagnetics Research, Vol. 126, 521-538, 2012. Google Scholar
10. Hartunian, R. A., G. E. Stewart, S. D. Fergason, T. J. Curtiss, and R. W. Seibold, "Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles,", Aerosp. Corp., El Segundo, CA, Contractor Rep. ATR-2007(5309)-1, 2007. Google Scholar
11. Gilllman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation,", NASA, Washington DC, NASA/TM-2010-216220, 2010. Google Scholar
12. Manningm, R. M., "Analysis of electromagnetic wave propagation in a magnetized re-entry plasma sheath via the Kinetic equation,", NASA, Glenn Research Center, Cleveland, Ohio, NASA/TM-2009-216096, 2009. Google Scholar
13. Liu, J.-F., X.-L. Xi, G.-B. Wan, and L.-L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 852-855, Mar. 2011. Google Scholar
14. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma heath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012. Google Scholar
15. Hu , B. J., G. Wei, and S. L. Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 27, No. 4, 1131-1135, 1999. Google Scholar
16. Petrin, A. B., "Transmission of microwaves through magnetoactive plasma," IEEE Transactions on Plasma Science, Vol. 29, No. 3, 471-478, 2001. Google Scholar
17. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007. Google Scholar
18. Huang, H., Y. Fan, B.-I. Wu, F. Kong, and J. A. Kong, "Surface modes at the interfaces between isotropic media and uniaxial plasma," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007. Google Scholar
19. Liu, X., Y. Shi, P. Zhu, Y. Zhang, and Q. Yang, "Total internal reflection of pulsed light beam upon ideal non-absorbing plasma," Journal of Modern Optics, Vol. 59, No. 7, 643-649, Apr. 2012. Google Scholar
20. Yin, X., H. Zhang, H.-Y. Xu, and X.-F. Zeng, "Improved shift-operator FDTD method for anisotropic magnetized plasma with arbitrary magnetic declination," Progress In Electromagnetics Research B, Vol. 38, 39-56, 2012. Google Scholar
21. Yin, X., H. Zhang, Z.-W. Zhao, and S.-J. Sun, "A high efficient SO-FDTD method for magnetized collisional plasma," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1911-1921, 2012. Google Scholar
22. Yin, X., H. Zhang, et al. "Analysis of the Faraday rotation in a magnetized plasma," 2012 International Conference on Microwave and Millimeter Wave Technology, (ICMMT), Vol. 2, 1-4, May 2012. Google Scholar
23. Sodha, M. S., S. K. Mishra, and S. K. Agarwal, "Nonlinear prop-agation, self-modulation, and faraday rotation of electromagnetic beams in the ionosphere," IEEE Transactions on Plasma Science, Vol. 37, No. 2, 375-386, Feb. 2009. Google Scholar
24. Jandieri, G. V., A. Ishimaru, V. Jandieri, and N. N. Zhukova, "Depolarization of metric radio signals and the spatial spectrum of scattered radiation by magnetized turbulent plasma slab," Progress In Electromagnetics Research, Vol. 112, 63-75, 2011. Google Scholar
25. Bakunov, M. I. and S. N. Zhukov, "Transformation of electromagnetic wave polarization by the resonance in a thin solid-plasma film," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 6, 791-802, 1996. Google Scholar
26. Negi, J. G. and R. N. Singh, "Propagator matrix formulation of heat transfer in spherically stratified media," Pure and Applied Geophysics, Vol. 70, No. 1, 74-80, 1968. Google Scholar
27. Rokhlin, S. I., "Stable recursive algorithm for elastic wave propagation in layered anisotropic media: Stiffness matrix method," J. Acoust. Soc. Am., Vol. 112, 822-834, 2002. Google Scholar
28. Chew, W. C., Waves and Fields in Inhomogeneous Media, Chapter 2, Van Nostrand Reinhold, New York, 1990.
29. Golub, G. H., "Some modified matrix eigenvalue problems," SIAM Review, Vol. 15, No. 2, 318-334, 1973. Google Scholar
30. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, 2nd edition, Chapter 6, Pergamon, New York, 1970.