1. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603 Google Scholar
2. Smith, , D. R., W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
3. He, X., Y. Wang, J. Wang, and T. Gui, , "Thin-film sensor based tip-shaped split ring resonator metamaterial for microwave application ," Microsyst. Technol., Vol. 16, No. 10, 1735-1739, 2010.
doi:10.1007/s00542-010-1080-2 Google Scholar
4. Kante, , B., D. Germain, and A. De Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, No. 20, 201104, 2009.
doi:10.1103/PhysRevB.80.201104 Google Scholar
5. La Spada, , L., F. Bilotti, and L. Vegni, "Metamaterial-based sensor design working in infrared frequency range," Progress In Electromagnetics Research B,, Vol. 34, 205-223, 2011. Google Scholar
6. Lee, H. Lee and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012. Google Scholar
7. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401 Google Scholar
8. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
9. Pendry, , J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
10. Meng, , F. Y., Meng, F. Y., Y. L. Li, K. Zhang, Q. Wu, and J. L. W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012. Google Scholar
11. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research , Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401 Google Scholar
12. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Trans. on Microwave Theory and Tech., Vol. 52, No. 10, 2438-2447, 2004.
doi:10.1109/TMTT.2004.835916 Google Scholar
13. Withayachumnankul, , W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photon. J., Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288 Google Scholar
14. Tao, , H., W. J. Padilla, X. Zhang, and R. D. Averitt, "Recent progress in electromagnetic metamaterial devices for terahertz applications," IEEE J. Sel. Top. Quantum Electron., Vol. 17, No. 1, 92-101, 2011.
doi:10.1109/JSTQE.2010.2047847 Google Scholar
15. Miyamaru, , F., Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, et al. "Terahertz electric response of fractal metamaterial structures," Phys. Rev. B., Vol. 77, No. 4, 045124, 2008.
doi:10.1103/PhysRevB.77.045124 Google Scholar
16. Miyamaru, , F., S. Kubota, and M. W. Takeda, "Optics express optics letters," Appl. Phys. Express, Vol. 5, No. 7, 2001, 2012.
doi:10.1143/APEX.5.072001 Google Scholar
17. De la Mata Luque, , T. M., N. R. K. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research,, Vol. 131, 185-194, 2012. Google Scholar
18. O'Hara, , J. F., W. Withayachumnankul, and I. Al-Naib, "A review on thin-film sensing with terahertz waves," J. Infrared Millim. Terahertz Waves, Vol. 33, 245-291, 2012.
doi:10.1007/s10762-012-9878-x Google Scholar
19. Bingham, , C. M., H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, "Planar wallpaper group metamaterials for novel terahertz applications," Opt. Express, Vol. 16, No. 23, 18565-18575, 2008.
doi:10.1364/OE.16.018565 Google Scholar
20. Padilla, , W. J., A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett.,, Vol. 96, No. 10, 107401, 2006.
doi:10.1103/PhysRevLett.96.107401 Google Scholar
21. Miyamaru, F., Y. Saito, M. Takeda, L. Liu, B. Hou, W. Wen, et al., "Emission of terahertz radiations from fractal antennas," Appl. Phys. Lett., Vol. 95, No. 22, 221111-221111-3, 2009.
doi:10.1063/1.3271181 Google Scholar
22. Chiam, S. Y., R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, "Increased frequency shifts in high aspect ratio terahertz split ring resonators," Appl. Phys. Lett., Vol. 94, No. 6, 064102-064102-3, 2009.
doi:10.1063/1.3079419 Google Scholar
23. Chiam, , S. Y., R. Singh, W. Zhang, and A. A. Bettiol, "Controlling metamaterial resonances via dielectric and aspect ratio effects," Appl. Phys. Lett., Vol. 97, No. 19, 191906-191906-3, 2010..
doi:10.1063/1.3514248 Google Scholar
24. Tao, , H., A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, et al. "Performance enhancement of terahertz metamate-rials on ultrathin substrates for sensing applications," Appl. Phys. Lett.,, Vol. 97, No. 26, 261909-261909-3, 2010.
doi:10.1063/1.3533367 Google Scholar
25. Tao, , H., A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, et al. "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D: Appl. Phys., Vol. 40, 232004, 2008.
doi:10.1088/0022-3727/41/23/232004 Google Scholar