Vol. 138
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-28
Terahertz Sensing Application by Using Fractal Geometries of Split-Ring Resonators
By
Progress In Electromagnetics Research, Vol. 138, 407-419, 2013
Abstract
In this study, we report the simulation, fabrication and characterization of a dual-band fractal metamaterial used for terahertz sensing application. By applying the fractal structures of square Sierpinski (SS) curve to the split-ring resonators (SRRs), more compact size and higher sensitivity can be achieved as privileges over conventional SRRs. The influence of different geometrical parameters and the order of the fractal curve on the performances are investigated. Then overlayers are added to the fractal SRRs in order to explore the performance of the entire system in terms of sensing phenomenon. The changes in the transmission resonances are monitored upon variation of the overlayer thickness and permittivity. Measured results show good agreement with simulated data. At the second resonance of the second-order SS-SRRs, maximum frequency shifts of 19.8 GHz, 26.3 GHz and 37.8 GHz were observed for a 2 μm, 4 μm and 10 μm thickness of photoresist. The results show good sensitivity of the sensors suggesting they can be used for a myriad of terahertz sensing applications in biology and chemistry.
Citation
Yanbing Ma Huai-Wu Zhang Yuanxun Li Yicheng Wang Weien Lai , "Terahertz Sensing Application by Using Fractal Geometries of Split-Ring Resonators," Progress In Electromagnetics Research, Vol. 138, 407-419, 2013.
doi:10.2528/PIER13010702
http://www.jpier.org/PIER/pier.php?paper=13010702
References

1. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603

2. Smith, , D. R., , W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. He, X., , Y. Wang, J. Wang, and T. Gui, , "Thin-film sensor based tip-shaped split ring resonator metamaterial for microwave application ," Microsyst. Technol., Vol. 16, No. 10, 1735-1739, 2010.
doi:10.1007/s00542-010-1080-2

4. Kante, , B., D. Germain, and A. De Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, No. 20, 201104, 2009.
doi:10.1103/PhysRevB.80.201104

5. La Spada, , L., , F. Bilotti, and L. Vegni, "Metamaterial-based sensor design working in infrared frequency range," Progress In Electromagnetics Research B,, Vol. 34, 205-223, 2011.

6. Lee, H. Lee and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

7. Kuznetsov, S. A., , A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401

8. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

9. Pendry, , J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

10. Meng, , F. Y., Meng, F. Y., Y. L. Li, K. Zhang, Q. Wu, and J. L. W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

11. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research , Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

12. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Trans. on Microwave Theory and Tech., Vol. 52, No. 10, 2438-2447, 2004.
doi:10.1109/TMTT.2004.835916

13. Withayachumnankul, , W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photon. J., Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288

14. Tao, , H., W. J. Padilla, X. Zhang, and R. D. Averitt, "Recent progress in electromagnetic metamaterial devices for terahertz applications," IEEE J. Sel. Top. Quantum Electron., Vol. 17, No. 1, 92-101, 2011.
doi:10.1109/JSTQE.2010.2047847

15. Miyamaru, , F., , et al., "Terahertz electric response of fractal metamaterial structures," Phys. Rev. B., Vol. 77, No. 4, 045124, 2008.
doi:10.1103/PhysRevB.77.045124

16. Miyamaru, , F., , S. Kubota, and M. W. Takeda, "Optics express optics letters," Appl. Phys. Express, Vol. 5, No. 7, 2001, 2012.
doi:10.1143/APEX.5.072001

17. De la Mata Luque, , T. M., , N. R. K. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research,, Vol. 131, 185-194, 2012.

18. O'Hara, , J. F., , W. Withayachumnankul, and I. Al-Naib, "A review on thin-film sensing with terahertz waves," J. Infrared Millim. Terahertz Waves, Vol. 33, 245-291, 2012.
doi:10.1007/s10762-012-9878-x

19. Bingham, , C. M., , H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, "Planar wallpaper group metamaterials for novel terahertz applications," Opt. Express, Vol. 16, No. 23, 18565-18575, 2008.
doi:10.1364/OE.16.018565

20. Padilla, , W. J., , A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett.,, Vol. 96, No. 10, 107401, 2006.
doi:10.1103/PhysRevLett.96.107401

21. Miyamaru, F., et al., "Emission of terahertz radiations from fractal antennas," Appl. Phys. Lett., Vol. 95, No. 22, 221111-221111-3, 2009.
doi:10.1063/1.3271181

22. Chiam, S. Y., , R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, "Increased frequency shifts in high aspect ratio terahertz split ring resonators," Appl. Phys. Lett., Vol. 94, No. 6, 064102-064102-3, 2009.
doi:10.1063/1.3079419

23. Chiam, , S. Y., R. Singh, W. Zhang, and A. A. Bettiol, "Controlling metamaterial resonances via dielectric and aspect ratio effects," Appl. Phys. Lett., Vol. 97, No. 19, 191906-191906-3, 2010..
doi:10.1063/1.3514248

24. Tao, , H., , et al., "Performance enhancement of terahertz metamate-rials on ultrathin substrates for sensing applications," Appl. Phys. Lett.,, Vol. 97, No. 26, 261909-261909-3, 2010.
doi:10.1063/1.3533367

25. Tao, , H., , et al., "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D: Appl. Phys., Vol. 40, 232004, 2008.
doi:10.1088/0022-3727/41/23/232004