Vol. 138
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-12
Magnetic Field Shielding of Underground Cable Duct Banks
By
Progress In Electromagnetics Research, Vol. 138, 1-19, 2013
Abstract
In this paper an in-depth parametric analysis of shielding effectiveness obtained when using ferromagnetic or conductive screens to mitigate the field generated by duct banks is presented. Due to the need of a case-by-case approach, all the simulations, performed by a finite element software (GetDp), are applied to a case study composed by 9 (3x3) ducts, with six of them including high voltage single-core cables and the three left empty for eventual future expansion. Two shielding geometries are tested: horizontal and U-reverse, changing in each one the main parameters: width, thickness, clearance to conductors, etc. Moreover, the conductors are grouped in two balanced in-phase three-phase circuits arranged in three configurations: vertical, horizontal and triangular. The mutual phase ordering of both circuits is the one that minimizes the field, so no further field reduction can be obtained by simple methods. The power losses and cost of different shielding solutions are also presented, including the effect of adding a third circuit if required.
Citation
Juan Carlos del Pino-Lopez Pedro Cruz-Romero , "Magnetic Field Shielding of Underground Cable Duct Banks," Progress In Electromagnetics Research, Vol. 138, 1-19, 2013.
doi:10.2528/PIER13011710
http://www.jpier.org/PIER/pier.php?paper=13011710
References

1. Conti, , R., , F. Donazzi, P. Maioli, R. Rendina, and E. A. Sena, "Some Italian experiences in the utilization of HV underground cable systems to solve local problems due to magnetic field and other environmental issues," Cigrie Session, Paper C4-303, 2006..

2. Working Group C4.02.04, , Mitigation Techniques of Power-frequency Magnetic Fields Originated from Electric Power Systems, 373, Cigrie TB, 2009.

3. Dawoud, , M. M., , I. O. Habiballah, A. S. Farag, and A. Fironz, "Magnetic field management techniques in transmission underground cables," Electric Power Systems Research, Vol. 48, 117-192, 1999.
doi:10.1016/S0378-7796(98)00107-2

4. Karady, , G. G., , C. V. Nunez, and R. Raghavan, "The feasibility of magnetic ¯eld reduction by phase relationship optimization in cable systems," IEEE Trans. on Power Delivery, Vol. 13, No. 2, 1998.
doi:10.1109/61.660956

5. Del Pino, , J.-C. , P. Cruz, and , "Influence of different types of magnetic shields on the thermal behaviour and ampacity of underground power cables," IEEE Trans. on Power Delivery, Vol. 26, No. 4, 2659-2667, 2011.
doi:10.1109/TPWRD.2011.2158593

6. Boyvat, , M. and C. Hafner, "Molding the flow of magnetic ¯eld with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
doi:10.2528/PIER12022010

7. Sergeant, , P. and S. Koroglu, "Electromagnetic losses in magnetic shields for buried high voltage cables," Progress In Electromagnetics Research, Vol. 115, 441-460, 2011.

8. Del Pino, , J. C., P. Cruz, and L. Serrano-Iribarnegaray, "Impact of electromagnetic losses in closed two-component magnetic shields on the ampacity of underground power cables," Progress In Electromagnetics Research, Vol. 135, 601-625, 2013.

9. Bascom, E.-C., , W. Banker, and S. A. Boggs, "Magnetic field management considerations for underground cable duct banks," IEEE Transmission & Distribution Conference, 414-420, 2006.

10. Xu, , X.-B. and G. Liu, "A two-step numerical solution of magnetic ¯eld produced by ELF sources within a steel pipe," Progress In Electromagnetics Research, Vol. 28, 17-28, 2000.
doi:10.2528/PIER99101805

11. Gomez-Revuelto, I., , L. E. Garcia-Castillo, and M. Salazar-Palma, "Goal-oriented self-adaptive HP-strategies for finite element analysis of electromagnetic scattering and radiation problems," Progress In Electromagnetics Research, Vol. 125, 459-482, 2012.
doi:10.2528/PIER11121606

12. Torkaman, , H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407

13. Cabanas, , M. F., , F. Pedrayes Gonzalez, M. G. Melero, C. H. Rojas Garcia, G. A. Orcajo, J. M. Cano Rodriguez, and J. G. Norniella, "Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysis," Progress In Electromagnetics Research, Vol. 114, 221-234, 2011.

14. GetDp, Version 2.2.1, P. Dular and C. Geuzaine, University of Liege, 2012.
doi:http://www.geuz.org/getdp

15. Bertotti, , G., , Hysteresis in Magnetism, Academic Press, San Diego, 1998.

16. Ozturk, , N. , E. Celik, and , "Application of genetic algorithms to core loss coeffcient extraction," Progress In Electromagnetics Research M, Vol. 19, 133-146, 2011.
doi:10.2528/PIERM11051310

17. Mahmoudi, , A., , N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research , Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

18. IEC Standard 60287, Electric Cables --- Calculation of the Current Rating --- Part 3-2: Sections on Operating Conditions --- Economic Optimization of Power Cable Size, 2nd Ed., 2006.