1. "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Cao, , P. F., X. P. Zhang, L. Cheng, and Q. Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801 Google Scholar
3. Cao, , P. F., L. Cheng, Y. E. Li, X. P. Zhang, Q. Q. Meng, and W. J. Kong, "Reflectivity and phase control research for superresolution enhancement via the thin flms mismatch," Progress In Electromagnetics Research, Vol. 107, 365-378, 2010.
doi:10.2528/PIER10061801 Google Scholar
4. Monti, , G., L. Tarricone, and , "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801 Google Scholar
5. Cao, , P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-re°ection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetics Research , Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010 Google Scholar
6. Barnes, , W. L. and Surface plasmon, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
7. Lezec, , H. J., A. Degiron, E. Devaux, R. A. Linke, F. Martin, Moreno, L. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820, 2002.
doi:10.1126/science.1071895 Google Scholar
8. Luo, , Z., T. Suyama, X. Xu, and Y. Okuno, "A grating based plasmon biosensor with high resolution," Progress In Electromagnetics Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103 Google Scholar
9. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER11112406 Google Scholar
10. Ebbesen, , T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570 Google Scholar
11. Kumar, , S., G. Sharma, and V. Singh, "Sensitivity modulation of surface plasmon resonance sensor configurations in optical fiber waveguide," Progress In Electromagnetics Research Letters, Vol. 37, 167-176, 2013. Google Scholar
12. Fang, , N. and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett., Vol. 82, 161-163, 2003.
doi:10.1063/1.1536712 Google Scholar
13. Shi, , H., C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Optics Express, Vol. 13, No. 18, 6815-6820, 2005.
doi:10.1364/OPEX.13.006815 Google Scholar
14. Jia, , B., H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, "Near-field visualization of focal depth modulation by step corrugated plasmonic slits," Appl. Phys. Lett., Vol. 94, 151912, 2009.
doi:10.1063/1.3120542 Google Scholar
15. Shi, , H., C. Du, and X. Luo, "Focal length modulation based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett., Vol. 91, 093111, 2007.
doi:10.1063/1.2776875 Google Scholar
16. Wang, , J., W. Zhou, and , "Nearfield beam shaping through tuning diffraction coupling angles," Journal of Computational and Theoretical Nanoscience, Vol. 7, No. 6, 1021-1024, 2010.
doi:10.1166/jctn.2010.1447 Google Scholar
17. Fu, , Y. and X. Zhou, "Plasmonic lenses: A review," Plasmonics, Vol. 5, No. 3, 287-310, 2010.
doi:10.1007/s11468-010-9144-9 Google Scholar
18. Liu, , Z., J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett., Vol. 5, No. 9, 1726-1729, 2005.
doi:10.1021/nl051013j Google Scholar
19. Yin, , L., V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett.,, Vol. 5, 1399-1402, 2005.
doi:10.1021/nl050723m Google Scholar
20. Fu, , Y. Q. and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett., Vol. 91, No. 6, 061124, 2007.
doi:10.1063/1.2769942 Google Scholar
21. Fu, , Y., C. Du, W. Zhou, and L. E. N. Lim, "Nanopinholes-based optical superlens," Research Letters in Physics, Vol. 2008, 148505, 2008. Google Scholar
22. Zou, D. Q., "Beam adjustment with double subwavelength metal its surrounded by tapered dielectric gratings," Chin. Phys. Lett., Vol. 27, No. 1, 17801, 2010.
doi:10.1088/0256-307X/27/1/017801 Google Scholar
23. Zhang, M., J. Du, H. Shi, S. Yin, L. Xia, B. Jia, M. Gu, and C. Du, "Three-dimensional nanoscale far-field focusing of radially polarized light by scattering the SPPs with an annular groove," Optics Express, Vol. 18, No. 14, 14664-14670, 2010.
doi:10.1364/OE.18.014664 Google Scholar
24. Cheng, , L., P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, "High e±cient far-¯eld nanofocusing with tunable focus under radial polarization illumination," Plasmonics,, Vol. 7, No. 1, 175-184, 2012.
doi:10.1007/s11468-011-9291-7 Google Scholar
25. Lopez-Tejeira, F., F. Garcia-Vidal, and L. Martin-Moreno, "Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces," Phys. Rev. B,, Vol. 72, No. 16, 161405, 2005.
doi:10.1103/PhysRevB.72.161405 Google Scholar
26. Nikitin, , A., F. Lopez-Tejeira, and L. Martin-Moreno, "Scattering of surface plasmon polaritons by one dimensional in homogeneities," Phys. Rev. B, Vol. 75, No. 3, 35129, 2007.
doi:10.1103/PhysRevB.75.035129 Google Scholar
27. Yu, L., D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh,J. Liu, C. Yeh, and C. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B, Vol. 71, No. 4, 41405, 2005.
doi:10.1103/PhysRevB.71.041405 Google Scholar
28. Lockyear, , M. J., A. P. Hibbins, and J. R. Sambles, "Surfacetopography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett., Vol. 84, 2040-2042, 2004.
doi:10.1063/1.1688001 Google Scholar
29. Fu, , Y., W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," JOSA A,, Vol. 25, No. 1, 238-249, 2008.
doi:10.1364/JOSAA.25.000238 Google Scholar
30. Fu, , Y. and W. Zhou, "Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing," J. Nanophoton., Vol. 3, No. 1, 033504, 2009.
doi:10.1117/1.3159299 Google Scholar
31. Fox, M., Optical Properties of Solids, Oxford Univerity Press, 2001.
32. Lee, , K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011. Google Scholar
33. Youngworth, , K. and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Optics Express, Vol. 7, No. 2, 77-87, 2000.
doi:10.1364/OE.7.000077 Google Scholar
34. Liu, , Y., D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, "Negative group velocity of surface plasmons on thin metallic films," Proc. SPIE, Vol. 6323, 63231M, 2006.
doi:10.1117/12.681492 Google Scholar
35. Monti, , G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801 Google Scholar