1. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966. Google Scholar
2. Taflove, A. and S. Hagness, Computational Electrodynamics, Artech House, Boston, 1995.
3. Taflove, A. and M. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 8, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640 Google Scholar
4. Sun, G. and C. Trueman, "Some fundamental characteristics of the one-dimensional alternate-direction-implicit finite-difference time-domain method," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 46-52, 2004.
doi:10.1109/TMTT.2003.821230 Google Scholar
5. Lee, J., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 430-442, 1997.
doi:10.1109/8.558658 Google Scholar
6. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, No. 2, 94-103, 2001.
doi:10.1109/74.924608 Google Scholar
7. Adams, S., J. Payne, and R. Boppana, "Finite difference time domain (FDTD) simulations using graphics processors," IEEE DoD High Performance Computing Modernization Program Users Group Conference, 334-338, 2007.
doi:10.1109/HPCMP-UGC.2007.34 Google Scholar
8. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1324-1327, 2009.
doi:10.1109/TMAG.2009.2012614 Google Scholar
9. Smyk, A. and M. Tudruj, "Openmp/MPI programming in a multi-cluster system based on shared memory/message passing communication," Advanced Environments, Tools, and Applications for Cluster Computing, 157-160, 2002. Google Scholar
10. Farjadpour, A., D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Joannopoulos, S. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Optics Letters, Vol. 31, No. 20, 2972-2974, 2006.
doi:10.1364/OL.31.002972 Google Scholar
11. Rahman, B. M. A. and J. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 1, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606 Google Scholar
12. Rahman, B. M. A. and J. Davies, "Finite-element solution of integrated optical waveguides," Journal of Lightwave Technology, Vol. 2, No. 5, 682-688, 1984.
doi:10.1109/JLT.1984.1073669 Google Scholar
13. Hayata, K., M. Koshiba, M. Eguchi, and M. Suzuki, "Vectorial finite-element method without any spurious solutions for dielectric waveguiding problems using transverse magnetic-field component," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 11, 1120-1124, 1986.
doi:10.1109/TMTT.1986.1133508 Google Scholar
14. Cangellaris, A., C. Lin, and K. Mei, "Point-matched time domain finite element methods for electromagnetic radiation and scattering," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 10, 1160-1173, 1987.
doi:10.1109/TAP.1987.1143981 Google Scholar
15. Feliziani, M. and E. Maradei, "Point matched finite element-time domain method using vector elements," IEEE Transactions on Magnetics, Vol. 30, No. 5, 3184-3187, 1994.
doi:10.1109/20.312614 Google Scholar
16. Koshiba, M., Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," Journal of Lightwave Technology, Vol. 18, No. 1, 102, 2000.
doi:10.1109/50.818913 Google Scholar
17. Hesthaven, T. W. J. S., "High-order/spectral methods on un-structured grids I. Time-domain solution of Maxwell's equations ,", Tech. Rep. 2001-6-ICASE NASA Langley Research Center, Hampton, Virginia, March 2001. Google Scholar
18. Songoro, H., M. Vogel, and Z. Cendes, "Keeping time with Maxwell's equations," IEEE Microwave Magazine, Vol. 11, No. 2, 42-49, 2010.
doi:10.1109/MMM.2010.935779 Google Scholar
19. Gedney, S. and U. Navsariwala, "An unconditionally stable finite element time-domain solution of the vector wave equation," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 10, 332-334, 1995.
doi:10.1109/75.465046 Google Scholar
20. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Edition, Princeton University Press, 2008.
21. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
22. Berenger, J., "Perfectly matched layer for the fdtd solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 110-117, 1996.
doi:10.1109/8.477535 Google Scholar
23. Veselago, V., et al., "The electrodynamics of substances with simultaneously negative values of ε and μ," Physics-Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
24. Hao, Y. and R. Mittra, FDTD Modeling of Metamaterials, Artech House, 2009.
25. Juntunen, J. and T. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 582-588, 2000.
doi:10.1109/22.842030 Google Scholar
26. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition, Artech House, 2000.