Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-03
Comparison of the Two-Scale and Three-Scale Models for Bistatic Electromagnetic Scattering from Ocean Surfaces
By
Progress In Electromagnetics Research, Vol. 138, 519-536, 2013
Abstract
With rapid development of satellite technology in monitoring the ocean, a good understanding of the physical processes involved in the electromagnetic ocean-surface interaction is required. The composite surface models are usually applied in the analysis of the interaction, hence a systematical check of their region of validity is desirable. Based on a generalized minimal residual procedure which is right preconditioned (GMRES-RP) that we have recently developed which has demonstrated the desirable properties of a numerical algorithm: robust and efficient, in this paper, for bistatic scattering from one dimensional ocean surfaces, we carry out a systematic assessment of the performance of the popular two-scale model and the advanced three-scale model under different conditions of ocean surface wind speeds, polarizations, frequencies, and incidence angles. It is found that the two-scale model in general captures the bistatic scattering pattern, yet the accuracy of geometrical optics (GO) for the large scale wave brings considerable impact on the overall accuracy. If the evaluation of the contribution of the large scale wave is instead using direct numerical integration for the corresponding Kirchhoff integral, impressive improvements are frequently observed, especially at low frequency (L and C bands) and low wind speed (3 m/s). But care should be taken when apply two-scale method with numerical integration, since there are cases where visible discrepancy with method of moment (MoM) are observed. On the other hand, the three-scale model is found in very good agreement with MoM across the considered ocean surface wind speeds, polarizations, frequencies, and incidence angles, hence represents a much advanced model over the two-scale model.
Citation
Hejia Luo, and Yang Du, "Comparison of the Two-Scale and Three-Scale Models for Bistatic Electromagnetic Scattering from Ocean Surfaces," Progress In Electromagnetics Research, Vol. 138, 519-536, 2013.
doi:10.2528/PIER13022102
References

1. Silvestrin, , P., M. Berger, Y. H. Kerr, and J. Font, "ESA's second earth explorer opportunity mission: The soil moisture and ocean salinity mission-SMOS," IEEE Geosci. Remote Sens. Lett., Vol. 118, 11-14, 2001.

2. Gaiser, P. W., K. M. St. Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, et al. "The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 11, 2347-2361, 2004.
doi:10.1109/TGRS.2004.836867

3. Wright, , J. W., "A new model for sea clutter," IEEE Trans. Antennas Propag., Vol. 16, No. 2, 217-223, 1968..
doi:10.1109/TAP.1968.1139147

4. Lyzenga, , D. R., J. F. Vesecky, and , "Two-scale polarimetric emissivity model: E±ciency improvements and comparisons with data," Progress In Electromagnetics Research,, Vol. 37, 205-219, 2002..
doi:10.2528/PIER02101000

5. Soriano, , G., M. Saillard, and , "Modelization of the scattering of electromagnetic waves from the ocean surface," Progress In Electromagnetics Research, Vol. 37, 101-128, 2002.
doi:10.2528/PIER01111800

6. Vaitilingom, , L., A. Khenchaf, and , "Radar cross sections of sea and ground clutter estimated by two scale model and small slope approximation in HF-VHF bands," Progress In Electromagnetics Research B,, Vol. 29, 311-338, 2011.
doi:10.2528/PIERB11021607

7. Plant, , W. J., , "A stochastic, multiscale model of microwave backscatter from the ocean," J. Geophys. Res., Vol. 107, No. C9, 3120, 2002.
doi:10.1029/2001JC000909

8. Romeiser, , R.,s, A. Schmidt, and W. Alpers,s, "A three-scale composite surface model for the ocean wave-radar modulation transfer function," J. Geophys. Res., Vol. 99, No. C5, 9785-9801, 1994.
doi:10.1029/93JC03372

9. Banks, , C. J., C. P. Gommenginger, M. A. Srokosz, and H. M. Snaith, "Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 5, 1688-1702, 2012.
doi:10.1109/TGRS.2011.2167340

10. Guimbard, , S., J. Gourrion, M. Portabella, A. Turiel, C. Gabarro and J. Font, "SMOS semi-empirical ocean forward model adjustment," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 5, 1676-1687, 2012.
doi:10.1109/TGRS.2012.2188410

11. Wu, , Z.-S., J.-P. Zhang, L.-X. Guo, and P. Zhou,s, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803

12. Sajjad, , N., A. Khenchaf, A. Coatanhay, and A. Awada,s, "An improved two-scale model for the ocean surface bistatic scattering, ," IEEE Trans. Geosci. Remote Sens. Symposium, Vol. 1, I387-I390, 2008.

13. Voronovich, , A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves Random Media, Vol. 4, No. 3, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

14. Yang, , G., Y. Du, and , "A robust preconditioned GMRES method for electromagnetic scattering from dielectric rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 9, 3396-3408, 2012.
doi:10.1109/TGRS.2012.2184291

15. Holliday, , D., L. L. DeRaad, and G. J. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 722-729, 1996..
doi:10.1109/8.496263

16. Chou, H. T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Sci.,, Vol. 33, 1277-1288, 1998..
doi:10.1029/98RS01888

17. Torrungrueng, , D., J. T. Johnson, and H. T. Chou, "Some issues related to the novel spectral acceleration method for the fast computation of radiation/scattering from one-dimensional extremely large scale quasi-planar structures," Radio Sci., Vol. 37, No. 2, 1019, 2002.
doi:10.1029/2000RS002504

18. Li, , S.-Q., C. H. Chan, L. Tsang, and L. Zhou, "Microwave emission of rough ocean surfaces with full spatial spectrum based on the multilevel expansion method," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 3, 574-582, 2002..
doi:10.1109/TGRS.2002.1000317

19. Gill, , E., W. Huang, and J. Walsh, , "The effect of the bistatic scattering angle on the high-frequency radar cross sections of the ocean surface," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 2, 143-146, 2008.
doi:10.1109/LGRS.2008.915594

20. Ji, W.-J., C.-M. Tong, and , "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

21. Chen, , H., M. Zhang, and H.-C. Yin, "Facet-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
doi:10.2528/PIER11101108

22. Tsang, , L., J. A. Kong, and K. H. Ding, , Scattering of Electromagnetic Waves: Theories and Applications, John Wiley, 2000.
doi:10.1002/0471224286

23. Johnson, , J. T., R. T. Shin, J. A. Kong, L. Tsang, and K. Pak, "A numerical study of the composite surface model for ocean backscattering ," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 1, 72-83, 1998.
doi:10.1109/36.655319

24. Johnson, , J. T., "A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method," IEEE Trans. Antennas Propag., Vol. 46, No. 1, 114-120, 1998.
doi:10.1109/8.655458

25. Elfouhaily, , T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res., Vol. 102, No. C7, 781-769, 1997.
doi:10.1029/97JC00467

26. Thorsos, , E. I., , "Acoustic scattering from a `Pierson{Moskowitz' sea surface," J. Acoust. Soc. Am., , Vol. 88, No. 1, 335-349, 1990.
doi:10.1121/1.399909

27. Durden, S. "A physical radar cross-section model for a wind-driven sea with swell," IEEE J. Ocean. Eng., Vol. 10, No. 4, 445-451, 1985..
doi:10.1109/JOE.1985.1145133

28. Bjerkaas, , A. W., F. W. Riedel, and , "Proposed model for the elevation spectrum of a wind-roughened sea surface," DTIC Document, Tech. Rep., 1979.

29. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave Remote Sensing: Active and Passive, Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory," Artech House, , 1986.

30. Kasilingam, , D. P., O. H. Shemdin, and , "The validity of the composite surface model and its applications to the modulation of radar backscatter," Int. J. Remote Sensing, Vol. 13, No. 11, 2079-2104, 1992.
doi:10.1080/01431169208904255

31. Li, , Y., J. C. West, and , "Low-grazing-angle scattering from 3-D breaking water wave crests," IEEE Trans. Geosci. Remote Sens.,, Vol. 44, No. 8, 2093-2101, 2006..
doi:10.1109/TGRS.2006.872129

32. McDaniel, , S. T., "Small-slope predictions of microwave backscatter from the sea surface," ," Waves Random Media, Vol. 11, No. 3,, Vol. 11, No. 3, 343-360, 2001.