Institute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Institute for Advanced Biomedical Technologies
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Chieti
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Italy
Homepage1. Clarke, J., M. Hatridge, and M. Moble, "SQUID-detected magnetic resonance imaging in microtesla fields," Annual Review of Biomedical Engineering, Vol. 9, 389-413, 2007.
doi:10.1146/annurev.bioeng.9.060906.152010 Google Scholar
2. Trahms, L. and M. Burghoff, "NMR at very low fields," Magnetic Resonance Imaging, Vol. 28, 1244-1250, 2010.
doi:10.1016/j.mri.2010.02.004 Google Scholar
3. McDermott, R., S. Lee, B. T. Haken, A. H. Trabesinger, A. Pines, and J. Clarke, "Microtesla MRI with a superconducting quantum interference device," Proceeding of the National Academy of Sciences of the United States of America, Vol. 101, 7857-7861, 2004.
doi:10.1073/pnas.0402382101 Google Scholar
4. Trabesinger, A. H., R. McDermott, S. Lee, M. Muck, J. Clarke, and A. Pines, "SQUID-detected liquid state NMR in microtesla fields," The Journal of Physical Chemistry A, Vol. 108, 957-963, 2004.
doi:10.1021/jp035181g Google Scholar
5. Moble, M., S. I. Han, W. R. Myers, S. K. Lee, N. Kelso, M. Hatridge, A. Pines, and J. Clarke, "SQUID-detected microtesla MRI in the presence of metal," Journal of Magnetic Resonance, Vol. 179, 146-151, 2006.
doi:10.1016/j.jmr.2005.11.005 Google Scholar
6. Busch, H., M. Hatridge, M. Moble, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, "Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT," Magnetic Resonance in Medicine, Vol. 67, 1138-1145, 2012.
doi:10.1002/mrm.24177 Google Scholar
7. Zotev, V. S., A. N. Matlashov, P. L. Volegov, I. M. Savukov, M. A. Espy, J. C. Mosher, J. J. Gomez, R. H. Kraus Jr. "Microtesla MRI of the human brain combined with MEG," Journal of Magnetic Resonance, Vol. 194, 115-120, 2008.
doi:10.1016/j.jmr.2008.06.007 Google Scholar
8. Magnelind, P. E., J. J. Gomez, A. N. Matlashov, T. Owens, J. H. Sandin, P. L. Volegov, and M. A. Espy, "Co-registration of interleaved MEG and ULF-MRI using a 7 channel low-Tc system," IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 456-460, 2011.
doi:10.1109/TASC.2010.2088353 Google Scholar
9. Vesanen, P. T., J. O. Nieminen, K. C. J. Zevenhoven, J. Dabek, L. T. Parkkonen, A. V. Zhdanov, J. Luomahaara, J. Hassel, J. Penttila, J. Simola, A. I. Ahonen, J. P. Makela, and R. J. Il-moniemi, "Hybrid ultra-low-field-MRI and magnetoencephalography system bassed on a commercial whole-head neuromagnetometer," Magnetic Resonance in Medicine, Vol. 69, 1795-1804, 2013.
doi:10.1002/mrm.24413 Google Scholar
10. Zotev, V. S., A. N. Matlashov, P. L. Volegov, A. V. Urbaitis, M. A. Espy, and R. H. Kraus Jr., "SQUID-based instrumentation for ultralow-field MRI," Superconductor Science and Technology, Vol. 20, S367-S371, 2007.
doi:10.1088/0953-2048/20/11/S13 Google Scholar
11. Bernarding, J., G. Buntkowsky, S. Macholl, S. Hartwig, M. Burghoff, and L. Trahms, "J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields," Journal of the American Chemical Society, Vol. 128, 714-715, 2006.
doi:10.1021/ja055273e Google Scholar
12. Hartwig, S., M. Voigt, H. J. Scheer, H. H. Albrecht, M. Burghoff, and L. Trahms, "Nuclear magnetic relaxation in water revisited," The Journal of Chemical Physics, Vol. 135, 054201, 2011.
doi:10.1063/1.3623024 Google Scholar
13. Pannetier-Lecoeur, M., C. Fermon, N. Bizierre, J. Scola, and A. L. Walliang, "RF response of superconducting-GMR mixed sensors, application to NQR," IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, 598-601, 2007.
doi:10.1109/TASC.2007.898056 Google Scholar
14. Sergeeva-Chollet, N., H. Dyvorne, J. Dabek, Q. Herreros, H. Polovy, G. Le Goff, G. Cannies, M. Pannetier-Lecour, and C. Fermon, "Low field MRI with magnetoresistive mixed sensor," Journal of Physics Conference Series, Vol. 303, 012055, 2011.
doi:10.1088/1742-6596/303/1/012055 Google Scholar
15. Pannetier, M., C. Fermon, G. Le Goff, J. Simola, and E. Kerr, "Femtotesla magnetic field measurements with magnetoresistive sensors," Science, Vol. 304, 1648-1650, 2004.
doi:10.1126/science.1096841 Google Scholar
16. Pannetier, M., C. Fermon, G. Legoff, J. Simola, E. Kerr, M. Welling, R. J. Wijngaarden, J. Rinke, and , "Ultra-sensitive field sensors --- An alternative to SQUIDs," IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, 892-895, 2005.
doi:10.1109/TASC.2005.850104 Google Scholar
17. Dyvorne, H., J. Scola, C. Fermon, J. F. Jacquinot, and M. Pannetier-Lecoeur, "Flux transformers made of commercial high critical temperature superconducting wires," Review of Scientific Instruments, Vol. 79, 025107, 2008.
doi:10.1063/1.2885610 Google Scholar
18. Grover, F. W., "Inductance Calculations, Working Formulas and Tables," Dover, New York, 1973. Google Scholar
19. Granata, C., A. Vettoliere, S. Rombetto, C. Nappi, M. Russo "Performances of compact integrated superconducting magnetometers for biomagnetic imaging," Journal of Applied Physics, Vol. 104, 073905, 2008. Google Scholar
20. Rombetto, S., A. Vettoliere, C. Granata, M. Russo, and C. Nappi, "Sensitivity and spatial resolution of square loop SQUID magnetometers," Physica C: Superconductivity, Vol. 468, 2328-2331, 2008.
doi:10.1016/j.physc.2008.08.005 Google Scholar
21. Myers, W., D. Slichter, M. Hatridge, S. Busch, M. Moble, R. McDermott, A. Trabesinger, and J. Clarke, "Calculated signal to noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 ¹T to 1.5 T," Journal of Magnetic Resonance, Vol. 186, 182-192, 2007.
doi:10.1016/j.jmr.2007.02.007 Google Scholar
22. Seton, H. C., J. M. S. Hutchison, and D. M. Bussel, "Gradiometer pick-up coil design for a low field SQUID-MRI system," Magnetic Resonance Materials in Physics, Biology and Medicine, Vol. 8, 116-120, 1999. Google Scholar
23. Matlashov, A. N., V. S. Zotev, R. H. Kraus, Jr., H. Sandin, A. V. Urbaitis, P. L. Volegov, and M. A. Espy, "SQUIDs for magnetic resonance imaging at ultra-low magnetic field," PIERS Online, Vol. 5, No. 5, 466-470, 2009.
doi:10.2529/PIERS090310140213 Google Scholar
24. Burghoff, M., H. H. Albrecht, S. Hartwig, I. Hilschenz, R. Korber, T. Sander ThÄommes, H. J. Scheer, J. Voigt, and L. Trahms, "SQUID system for MEG and low field magnetic resonance," Metrology and Measurements Systems, Vol. 16, 371-375, 2009. Google Scholar
25. Nieminen, J. O., P. T. Vesanen, K. C. J. Zevenhoven, J. Dabek, J. Hassel, J. Luomahaara, J. S. Penttila, and R. J. Ilmoniemi, "Avoiding eddy-current problems in ultra-low-field MRI with self-shielded polarizing coils," Journal of Magnetic Resonance, Vol. 212, 154-160, 2011. Google Scholar
26. Hilbert, C., J. Clarke, T. Sleator, and E. L. Hahn, "Nuclear quadrupole resonance detected at 30MHz with a dc supercon-ducting quantum interference device," Applied Physics Letters, Vol. 47, 637-639, 1985.
doi:10.1063/1.96042 Google Scholar