1. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House, Boston, MA, 2005.
2. Lam, T. A., C. G. Parazzoli, and M. H. Tanielian, "Negative index metamaterial lens for the scanning angle enhancement of phased array antennas," Metamaterials and Plasmonics: Fundamentals, Modeling, Applications, S. Zouhdi, A. Sihvola, and A. Vinogradov (eds.), 121-138, Springer-Verlag, New York, 2008. Google Scholar
3. Lam, T. A., D. C. Vier, J. A. Nielsen, C. G. Parazzoli, and M. H. Tanielian, "Steering phased array antenna beams to the horizon using a buckyball NIM lens," Proceedings of IEEE, Vol. 99, No. 10, 1755-1767, 2011.
doi:10.1109/JPROC.2011.2128290 Google Scholar
4. Leonhardt, U. and T. G. Philbin, Geometry and Light: Science of Invisibility, Dover, 2010.
5. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
6. Pendry, J. B., "Negative refraction makes a perfect lens," Phy. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
7. Sun, F. and S. He, "Create a uniform static magnetic field over 50T in a large free space region," Progress In Electromagnetics Research, Vol. 137, 149-157, 2013.
doi:10.2528/PIER13012802 Google Scholar
8. Sun, F. and S. He, "DC magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials of positive permeability," Progress In Electromagnetics Research, Vol. 142, 683-699, 2013.
doi:10.2528/PIER13092509 Google Scholar
9. Sun, F. and S. He, "Novel magnetic lens for static magnetic field enhancement," PIERS Proceedings, 1689-1691, Stockholm, Sweden, Aug. 12-15, 2013. Google Scholar
10. Sun, F. and S. He, "Static magnetic field concentration and enhancement using magnetic materials with positive permeability," Progress In Electromagnetics Research, Vol. 142, 579-590, 2013.
doi:10.2528/PIER13082102 Google Scholar
11. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, No. 5, 387-396, 2010.
doi:10.1038/nmat2743 Google Scholar
12. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics Nanostruct. Fundam. Appl., Vol. 6, 87-95, 2008.
doi:10.1016/j.photonics.2007.07.013 Google Scholar
13. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302 Google Scholar
14. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of re°ectionless complex media by ¯nite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903 Google Scholar
15. Garcia-Meca, C., M. M. Tung, J. V. Galan, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, "Squeezing and expanding light without reflections via transformation optics," Opt. Express, Vol. 19, No. 4, 3562-3575, 2011.
doi:10.1364/OE.19.003562 Google Scholar
16. Kwon, D. H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Opt. Express, Vol. 16, No. 23, 18731-18738, 2008.
doi:10.1364/OE.16.018731 Google Scholar
17. "The finite element simulation is conducted by using commercial software COMSOL Multiphysics,", http://www.comsol.com/.
doi:10.1364/OE.16.018731 Google Scholar
18. Hu, J., X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation," Opt. Express, Vol. 17, 1308-1320, 2009.
doi:10.1364/OE.17.001308 Google Scholar
19. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, Wiley-Interscience, 1972.