Vol. 146
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-05-20
Transformation Inside a Null-Space Region and a DC Magnetic Funnel for Achieving an Enhanced Magnetic Flux with a Large Gradient
By
Progress In Electromagnetics Research, Vol. 146, 143-153, 2014
Abstract
The idea of transformation inside a null-space region is introduced for the first time, and used to design a novel DC magnetic compressor that concentrates DC magnetic flux greatly and behaves as a DC magnetic funnel. The proposed device can be used as a passive DC magnetic lens to achieve an enhanced DC magnetic field (e.g. 7.9 times or more depending on the size and other parameters of the compressor) with a large gradient (e.g. 400T/m or more) in free space. After some theoretical approximation, the proposed device can be easily constructed by using a combination of superconductors and ferromagnetic materials. Numerical simulations are given to verify the performance of our device. The proposed method (use a null-space region as the reference space) can be extended to reduce the material requirement when designing other devices with transformation optics.
Citation
Fei Sun, and Sailing He, "Transformation Inside a Null-Space Region and a DC Magnetic Funnel for Achieving an Enhanced Magnetic Flux with a Large Gradient," Progress In Electromagnetics Research, Vol. 146, 143-153, 2014.
doi:10.2528/PIER14031707
References

1. Ripka, P. and M. Janosek, "Advances in magnetic field sensors," IEEE Sens. J., Vol. 10, 1108-1116, 2010.
doi:10.1109/JSEN.2010.2043429        Google Scholar

2. Brown, M. A. and R. C. Semelka, "MRI: Basic Principles and Applications," Wiley-Blackwell, 2010.        Google Scholar

3. Veiseh, O., J. W. Gunn, and M. Zhang, "Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging," Advanced Drug Delivery Reviews, Vol. 62, No. 3, 284-304, 2010.
doi:10.1016/j.addr.2009.11.002        Google Scholar

4. Dobson, J., "Magnetic micro- and nano-particle-based targeting for drug and gene delivery," Nanomedicine, Vol. 1, No. 1, 31-37, 2006.
doi:10.2217/17435889.1.1.31        Google Scholar

5. Matsumoto, S., T. Asano, T. Kiyoshi, and H. Wada, "Magnetic flux concentration using YBCO hollow and solid cylinders," IEEE Trans. Appl. Supercond, Vol. 14, 1666-1669, 2004.
doi:10.1109/TASC.2004.831030        Google Scholar

6. Zhang, Z. Y., S. Choi, S. Matsumoto, R. Teranishi, G. Giunchi, A. F. Albisetti, and T. Kiyoshi, "Magnetic lenses using di®erent MgB2 bulk superconductors," Supercond. Sci. Technol., Vol. 25, No. 2, 025009, 2012.
doi:10.1088/0953-2048/25/2/025009        Google Scholar

7. Asano, T., K. Itoh, S. Matsumoto, T. Kiyoshi, H. Wada, and G. Kido, "Enhanced concentration of the magnetic °ux in a superconducting cylinder," IEEE Trans. Appl. Supercond., Vol. 15, No. 2, 3157-3160, 2005.
doi:10.1109/TASC.2005.848759        Google Scholar

8. Kiyoshi, T., S. Choi, S. Matsumoto, T. Asano, and D. Uglietti, "Magnetic flux concentrator using Gd-Ba-Cu-O bulk superconductors," IEEE Trans. Appl. Supercond., Vol. 19, No. 3, 2174-2177, 2009.
doi:10.1109/TASC.2009.2018440        Google Scholar

9. Gomory, F., M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, No. 6075, 1466-1468, 2012.
doi:10.1126/science.1218316        Google Scholar

10. Supradeep, N. and Y. Sato, "DC magnetic cloak," Advanced Materials, Vol. 24, No. 1, 71-74, 2012.
doi:10.1002/adma.201104012        Google Scholar

11. Navau, C., J. Prat-Camps, and A. Sanchez, "Magnetic energy harvesting and concentration at a distance by transformation optics," Phys. Rev. Lett., Vol. 109, 263903, 2012.
doi:10.1103/PhysRevLett.109.263903        Google Scholar

12. Sun, F. and S. He, "Create a uniform static magnetic field over 50T in a large free space region," Progress In Electromagnetics Research, Vol. 137, 149-157, 2013.
doi:10.2528/PIER13012802        Google Scholar

13. Sun, F. and S. He, "DC magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials of positive permeability," Progress In Electromagnetics Research, Vol. 142, 683-699, 2013.
doi:10.2528/PIER13092509        Google Scholar

14. Sun, F. and S. He, "Novel magnetic lens for static magnetic field enhancement," PIERS Proceedings, 1689-1691, Stockholm, Sweden, Aug. 12-15, 2013.        Google Scholar

15. Sun, F. and S. He, "Static magnetic field concentration and enhancement using magnetic materials with positive permeability," Progress In Electromagnetic Research, Vol. 142, 579-590, 2013.
doi:10.2528/PIER13082102        Google Scholar

16. Navau, C., J. Prat-Camps, O. Romero-Isart, J. I. Cirac, and A. Sanchez, "Magnetic hose: Routing and long-distance transportation of magnetic fields,", arXiv: 1304.6300, 2013.        Google Scholar

17. Leonhardt, U. and T. G. Philbin, Geometry and Light: Science of Invisibility, Dover, 2010.

18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907        Google Scholar

19. Kolm, H. H., "The large-scale manipulation of small particle,", Vol. 11, No. 5, 1567-1569, 1975.        Google Scholar

20. Svoboda, J., Magnetic Techniques for the Treatment of Materials, 641, Kluwer Academic Publishers, Dordrecht, 2004.

21. Choi, J.-W., T. M. Liakopoulos, and C. H. Ahn, "An on-chip magnetic bead separator using spiral electromgnets with semi-encapsulated permalloy," Biosensors and Bioelectronics, Vol. 16, No. 4, 409-416, 2001.
doi:10.1016/S0956-5663(01)00154-3        Google Scholar

22. Yavuz, C. T., A. Prakash, J. T. Mayo, and V. L. Colvin, "Magnetic separations: From steel plants to biotechnology," Chemical Engineering Science, Vol. 64, No. 10, 2510-2521, 2009.
doi:10.1016/j.ces.2008.11.018        Google Scholar

23. Inglis, D. W., R. Riehn, J. C. Sturm, and R. H. Austin, "Microfluidic high gradient magnetic cell separation," Journal of Applied Physics, Vol. 99, No. 8, 08K101, 2006.
doi:10.1063/1.2165782        Google Scholar

24. Yeunf, S. W. and I. M. Hsing, "Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications," Biosnensors and Bioelectronics, Vol. 21, No. 7, 989-997, 2005.        Google Scholar

25. Coey, J. M. D. and S. Cass, "Magnetic water treatment," Journal of Magnetism and Magnetic Materials, Vol. 209, No. 1, 71-74, 2000.
doi:10.1016/S0304-8853(99)00648-4        Google Scholar

26. Karapinar, N., "Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation," International Journal of Mineral Processing, Vol. 71, No. 1, 45-54, 2003.
doi:10.1016/S0301-7516(03)00029-2        Google Scholar

27. Aoyagi, S., A. Yano, Y. Yanagida, E. Tanihira, A. Tagawa, and M. Iimoto, "Control of chemical reaction involving dissolved oxygen using magnetic field gradient," Chemical Physics, Vol. 331, No. 1, 137-141, 2006.
doi:10.1016/j.chemphys.2006.10.006        Google Scholar

28. Jin, F., Z. Ren, W. Ren, K. Deng, Y. Zhong, and J. Yu, "Effects of a high-gradient magnetic field on the migratory behavior of primary crystal silicon in hypereutectic Al-Si alloy," Science and Technology of Advanced Materials, Vol. 9, No. 2, 024202, 2008.
doi:10.1088/1468-6996/9/2/024202        Google Scholar

29. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903        Google Scholar

30. He, Q., S. Xiao, X. Li, and L. Zhou, "Optic-null medium: Realization and applications," Opt. Express, Vol. 21, No. 23, 28948-28959, 2013.
doi:10.1364/OE.21.028948        Google Scholar

31. Wang, W., L. Lin, X. Yang, J. Cui, C. Du, and X. Luo, "Design of oblate cylindrical perfect lens using coordinate transformation," Opt. Express, Vol. 16, No. 11, 8094-8105, 2008.
doi:10.1364/OE.16.008094        Google Scholar

32. Chen, H., X. Zhang, X. Luo, H. Ma, and C. T. Chan, "Reshaping the perfect electrical conductor cylinder arbitrarily," New Journal of Physics, Vol. 10, 113016, 2008.
doi:10.1088/1367-2630/10/11/113016        Google Scholar