1. Khoo, I. C. and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientidic, Singapore, 1994.
2. Khoo, I. C., "Liquid Crystals," Wiley, NJ, 2007. Google Scholar
3. Khoo, I. C., "Nonlinear optics of liquid crystalline materials," Physics Report, Vol. 471, No. 5-6, 221-267, 2009.
doi:10.1016/j.physrep.2009.01.001 Google Scholar
4. Khoo, I. C., "Extreme nonlinear optics of nematic liquid crystals," J. Opt. Soc. Am. B, Vol. 28, A45-A55, 2011.
doi:10.1364/JOSAB.28.000A45 Google Scholar
5. Khoo, I. C., "Nonlinear optics, active plasmonics and tunable metamaterials with liquid crystals," Progress in Quantum Electronics, Vol. 38, 77-117, 2014.
doi:10.1016/j.pquantelec.2014.03.001 Google Scholar
6. Sambles, J. R., R. Kelly, and R. F. Yang, "Metal slits and liquid crystals at microwave frequencies," Philos. Transact. A, Math. Phys. Eng. Sci., Vol. 364, No. 1847, 2733-2746, 2006.
doi:10.1098/rsta.2006.1850 Google Scholar
7. Khoo, I. C., Y. Z. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, C. J. Summers, and , "Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development," Mole. Cryst. Liq. Cryst., Vol. 453, 309-319, 2006.
doi:10.1080/15421400600653654 Google Scholar
8. Graugnard, E., J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B, Vol. 72, 233105-1-233105-4, 2005. Google Scholar
9. D'Alessandro, A., R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, "All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide," Appl. Phys. Lett., Vol. 97, No. 9, 093302, 2010.
doi:10.1063/1.3483157 Google Scholar
10. Larsen, T. T., A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibers," Optics Express, Vol. 11, 2589-2596, 2003.
doi:10.1364/OE.11.002589 Google Scholar
11. Ptasinski, J., S. W. Kim, L. Pang, I.-C. Khoo, and Y. Fainman, "Optical tuning of silicon photonic structures with nematic liquid crystal claddings," Optics Letters, Vol. 38, 2008-2010, 2013.
doi:10.1364/OL.38.002008 Google Scholar
12. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, "Tunable magnetic response of metamaterials," Appl. Phys. Lett., Vol. 95, No. 3, 033115, 2009.
doi:10.1063/1.3182857 Google Scholar
13. Minovich, A., J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, "Liquid crystal based nonlinear fishnet metamaterials," Appl. Phys. Lett., Vol. 100, 121113-4, 2012. Google Scholar
14. Zhao, Q., L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Z. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett., Vol. 90, No. 011112, 2007, and References therein. Google Scholar
15. Zhang, F. L., W. H. Zhang, Q. Zhao, J. B. Sun, K. P. Qiu, J. Zhou, and D. Lippens, "Electrically controllable fishnet metamaterial based on nematic liquid crystal," Optics Express, Vol. 19, 1563-1568, 2011.
doi:10.1364/OE.19.001563 Google Scholar
16. Bossard, J. A., X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. C. Khoo, "Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1308-1320, 2008.
doi:10.1109/TAP.2008.922174 Google Scholar
17. Wang, X., D. H. Kwon, D. H.Werner, I. C. Khoo, A. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett., Vol. 91, 143122, 2007.
doi:10.1063/1.2795345 Google Scholar
18. Werner, D. H., D. H. Kwon, and I. C. Khoo, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Optics Express, Vol. 15, 3342-3347, 2007.
doi:10.1364/OE.15.003342 Google Scholar
19. Zhao, Y., Q. Z. Hao, Y. Ma, M. Q. Lu, B. X. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, "Light-driven tunable dual band absorber with liquid-crystal-plasmonic asymmetric nanodisk array," Appl. Phys. Lett., Vol. 100, 053119, 2012.
doi:10.1063/1.3681808 Google Scholar
20. Huang, T. J., Y. J. Liu, B. Yue, J. Liou, and I. C. Khoo, "All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nanodisk arrays," Journal of Physical Chemistry, Vol. 115, No. 15, 7717-7722, 2011. Google Scholar
21. Hao, Q., Y. Zhao, J. B. Krishna, I. C. Khoo, and T. Huang, "Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals," J. Appl. Phys., Vol. 109, 084340, 2011.
doi:10.1063/1.3581037 Google Scholar
22. Liu, Y. J., Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, "A frequency-addressed plasmonic switch based on dual-frequency liquid crystals," Appl. Phys. Lett., Vol. 97, 091101, 2010.
doi:10.1063/1.3483156 Google Scholar
23. Dickson, W., G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Letts., Vol. 8, No. 1, 281-286, 2008.
doi:10.1021/nl072613g Google Scholar
24. Kossyrev, P. A., A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, "Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix," Nano Letts., Vol. 5, 1978-1981, 2005.
doi:10.1021/nl0513535 Google Scholar
25. Daly, K. R., S. Abbott, G. D'Alessandro, D. C. Smith, and M. Kaczmarek, "Theory of hybrid photorefractive plasmonic liquid crystal cells," J. Opt. Soc. Am., Vol. 28, 1874-1881, 2011.
doi:10.1364/JOSAB.28.001874 Google Scholar
26. Hu, W., R. Cahill, J. A. Encinar, et al. "Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3112-3117, 2008.
doi:10.1109/TAP.2008.929460 Google Scholar
27. Kuki, T., H. Fujikake, and T. Nomoto, "Microwave variable delay line using dual-frequency switching-mode liquid crystal," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 11, 2604-2609, 2002.
doi:10.1109/TMTT.2002.804510 Google Scholar
28. Dolfi, D., M. Labeyrie, P. Joffre, and J. P. Huignard, "Liquid crystal microwave phase shifter," Electron. Lett., Vol. 29, No. 10, 926-928, May 1993.
doi:10.1049/el:19930618 Google Scholar
29. Kuki, T., H. Fujikake, T. Nomoto, and Y. Utsumi, "Design of a microwave variable delay line using liquid crystal and a study of its insertion loss," Electron. Commun. Jpn., Vol. 85, No. 2, 36-42, Feb. 2002. Google Scholar
30. Kamei, T., Y. Utsumi, H. Moritake, K. Toda, and H. Suzuki, "Measurements of the dielectric properties of nematic liquid crystal at 10 kHz to 40 GHz and application to a variable delay line," Electron. Commun. Jpn., Vol. 86, No. 8, 49-60, Aug. 2003. Google Scholar
31. Fujikake, H., T. Kuki, T. Nomoto, Y. Tsuchiya, and Y. Utsumi, "Thick polymer-stabilized liquid crystal films for microwave phase control," J. Appl. Phys., Vol. 89, 5295-5298, 2001.
doi:10.1063/1.1365081 Google Scholar
32. Guerin, F., J. M. Chappe, P. Joffre, and D. Dolfi, "Modelling, synthesis and characterization of a millimeter-wave multilayer microstrip liquid crystal phase shifter," Jpn. J. Appl. Phys., Vol. 36, 4409-4413, 1997.
doi:10.1143/JJAP.36.4409 Google Scholar
33. Hibbins, A. P., J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of metallic bricks," Appl. Phys. Lett., Vol. 79, 2844-2846, 2001.
doi:10.1063/1.1412593 Google Scholar
34. Lim, K. C., J. D. Margerum, and A. M. Lackner, "Liquid crystal millimetre wave electronic phase shifter," Appl. Phys. Lett., Vol. 69, 1065-1067, 1993.
doi:10.1063/1.108796 Google Scholar
35. Lim, K. C., J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, "Liquid crystal birefringence for millimetre wave radar," Liq. Cryst., Vol. 14, 327-337, 1993.
doi:10.1080/02678299308027647 Google Scholar
36. Tanaka, M. and S. Sato, "Millimetre-wave de°ection properties of liquid crystal prism cells with stack-layered structure," J. Appl. Phys., Vol. 40, L1123-L1125, 2002. Google Scholar
37. Tanaka, M. and S. Sato, "Focusing properties of liquid crystal lens cells with stack-layered structure in the millimetre wave region," IEEE Microw. Wireless Component Lett.,, Vol. 12, 163-165, 2002.
doi:10.1109/7260.1000190 Google Scholar
38. Kowerdzieja, R., J. Parka, and J. Krupkab, "Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies," Liq. Cryst., Vol. 38, 743-747, 2011.
doi:10.1080/02678292.2011.571820 Google Scholar
39. Yang, F. and J. R. Sambles, "Microwave liquid crystal wavelength selector," Appl. Phys. Lett., Vol. 79, 3717-3719, 2001.
doi:10.1063/1.1419240 Google Scholar
40. Yang, F. and J. R. Sambles, "Microwave liquid crystal variable phase grating," Appl. Phys. Lett., Vol. 85, 2041-2043, 2004.
doi:10.1063/1.1787898 Google Scholar
41. Li, J., S. T.Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys., Vol. 97, No. 7, 073501, 2005.
doi:10.1063/1.1877815 Google Scholar
42. Yang, C. S., C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. L. Pan, "The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range," J. Opt. Soc. Am. B, Vol. 27, No. 4, 1866-1873, 2010.
doi:10.1364/JOSAB.27.001866 Google Scholar
43. Park, H., E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, "Evaluating liquid crystal properties for use in terahertz devices," Optics Express, Vol. 20, 11899-11905, 2012.
doi:10.1364/OE.20.011899 Google Scholar
44. Wang, L., X.-W. Lin, X. Liang, J.-B. Wu, W. Hu, Z.-G. Zheng, B.-B. Jin, Y.-Q. Qin, and Y.-Q. Lu, "Large birefringence liquid crystal material in terahertz rang," Opt. Mat. Exp., Vol. 2, 1314-1319, 2012.
doi:10.1364/OME.2.001314 Google Scholar
45. Weil, C., S. Mueller, P. Scheele, P. Best, G. LÄussem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett., Vol. 39, No. 24, 1732-1734, Nov. 2003.
doi:10.1049/el:20031150 Google Scholar
46. Mueller, S., A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, "Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 1937-1945, Jun. 2005.
doi:10.1109/TMTT.2005.848842 Google Scholar
47. Arakawa, Y., S. Nakajima, S. M. Kang, M. Shigeta, G. Konishi, and J. Watanabe, "Design of an extremely high birefringence nematic liquid crystal based on a dinaphthyl-diacetylene mesogen," J. Mat. Chem., Vol. 22, 13908-13910, 2012, and References therein.
doi:10.1039/c2jm32448b Google Scholar
48. Okano, K., O. Tsutsumi, A. Shishido, and T. Ikeda, "Azotolane liquid-crystalline polymers: Huge change in birefringence by photoinduced alignment change," J. Am. Chem. Soc., Vol. 128, 15368-15369, 2006.
doi:10.1021/ja0664382 Google Scholar
49. Christodoulides, D. N., I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, "Nonlinear refraction and absorption: Mechanisms and magnitudes," Adv. Opt. Photon., Vol. 2, 60-200, 2010.
doi:10.1364/AOP.2.000060 Google Scholar
50. Khoo, I. C., "Re-examination of the theory and experimental results of optically induced molecular reorientation and nonlinear di®ractions in nematic liquid crystals: Spatial frequency and temperature dependence," Phys. Rev., Vol. 27, 2747-2750, 1983, and References therein.
doi:10.1103/PhysRevA.27.2747 Google Scholar
51. Khoo, I. C. and R. Normandin, "The mechanism and dynamics of transient thermal grating di®raction in nematic liquid crystal films," IEEE J. Quant. Electronics, Vol. 21, No. 4, 329-335, 1985.
doi:10.1109/JQE.1985.1072667 Google Scholar
52. Khoo, I. C. and Y. R. Shen, "Liquid crystals-nonlinear optical properties and processes," Opt. Eng., Vol. 24, 579-585, 1985. Google Scholar
53. Fekete, D., J. AuYeung, and A. Yariv, "Phase conjugation reflection by degenerate four wave mixing in a nematic crystal in the isotropic phase," Optics Letters, Vol. 5, 51-53, 1980.
doi:10.1364/OL.5.000051 Google Scholar
54. Janossy, I. and T. Kosa, "Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals," Optics Letters, Vol. 17, 1183-1185, 1992.
doi:10.1364/OL.17.001183 Google Scholar
55. Li, H., Y. Liang, and I. C. Khoo, "Transient laser induced orthogonal director axis reorientation in dye-doped liquid crystal," Mol. Cryst. Liq. Cryst., Vol. 251, 85-92, 1994.
doi:10.1080/10587259408027194 Google Scholar
56. Yang, P., L. Liu, L. Xu, and Y. R. Shen, "Excitation-enhanced optical reorientation in nematic liquid crystals," Optics Letters, Vol. 15, 2252-2254, 2009.
doi:10.1364/OL.34.002252 Google Scholar
57. Khoo, I. C., H. Li, and Y. Liang, "Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal," IEEE J. Quant. Electronics, Vol. 29, No. 5, 1444-1447, 1993.
doi:10.1109/3.236160 Google Scholar
58. Rudenko, E. V. and A. V. Sukhov, "Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity," Journal of Experimental and Theoretical Physics, Vol. 78, No. 6, 875-882, 1994. Google Scholar
59. Khoo, I. C., H. Li, and Y. Liang, "Observation of orientational photorefractive effects in nematic liquid crystals," Optics Letters, Vol. 19, 1723-1725, 1994.
doi:10.1364/OL.19.001723 Google Scholar
60. Khoo, I. C., "Orientational photorefractive e®ects in nematic liquid crystal film," IEEE J. Quant. Electronics, Vol. 32, No. 3, 525-534, 1996.
doi:10.1109/3.485406 Google Scholar
61. Khoo, I. C., "Holographic grating formation in dye- and fullerene C60-doped nematic liquid crystal film," Optics Letters, Vol. 20, 2137-2139, 1996. Google Scholar
62. Khoo, I. C., "Optical-DC-field induced space charge fields and photorefractive-like holographic grating formation in nematic liquid crystals," Mol. Cryst. Liq. Cryst., Vol. 282, 53-66, 1996.
doi:10.1080/10587259608037568 Google Scholar
63. Khoo, I. C., S. Slussarenko, B. D. Guenther, and W. V. Wood, "Optically induced space charge fields, DC voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals," Optics Letters, Vol. 23, 253-255, 1998.
doi:10.1364/OL.23.000253 Google Scholar
64. Lucchetti, L., M. Gentili, and F. Simoni, "Effects leading to colossal optical nonlinearity in dye-doped liquid crystals," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 3, 422-430, 2006.
doi:10.1109/JSTQE.2006.872055 Google Scholar
65. Khoo, I. C., R. R. Michael, and P. Y. Yan, "Optically-induced molecular-reorientation in nematic liquid crystals and nonlinear optical processes in the nanosecond regime," IEEE J. Quant. Electronics, Vol. 23, No. 2, 267-272, 1987.
doi:10.1109/JQE.1987.1073318 Google Scholar
66. Khoo, I. C. and R. Normandin, "Nanosecond laser-induced transient and erasable permanent grating diffractions and ultrasonic waves in a smectic film," J. Appl. Phys., Vol. 55, 1416-1418, 1984.
doi:10.1063/1.333234 Google Scholar
67. Khoo, I. C. and R. Normandin, "Nanosecond degenerate optical wave mixing and ultrasonic wave generation in the nematic phase of liquid crystals," Optics Letters, Vol. 9, 285-287, 1984.
doi:10.1364/OL.9.000285 Google Scholar
68. Khoo, I. C., R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, "Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals," J. Appl. Phys., Vol. 69, 3853-3859, 1991.
doi:10.1063/1.348441 Google Scholar
69. Eichler, H. J. and R. Macdonald, "Flow alignment and inertial effects in picoseconds laser-induced reorientation phenomena of nematic liquid crystals," Phys. Rev. Lett., Vol. 67, 2666-2669, 1991.
doi:10.1103/PhysRevLett.67.2666 Google Scholar
70. Khoo, I. C. and S. Shepard, "Submillisecond grating diffractions in nematic liquid crystal films," J. Appl. Phys., Vol. 54, 5491-5493, 1983.
doi:10.1063/1.332699 Google Scholar
71. Hrozhyk, , U. A., A. Uladzimir, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, "Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors," Optics Express, Vol. 18, 9651-9657, 2010.
doi:10.1364/OE.18.009651 Google Scholar
72. White, T. J., R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, "Electrically switchable, photo-addressable cholesteric liquid crystal reflectors," Optics Express, Vol. 18, 173-178, 2010.
doi:10.1364/OE.18.000173 Google Scholar
73. Khoo, I. C., J. H. Park, and J. D. Liou, "Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal," J. Opt. Soc. Am. B, Vol. 25, 1931-1937, 2008, and References therein.
doi:10.1364/JOSAB.25.001931 Google Scholar
74. Khoo, I. C., J. Liou, and M. V. Stinger, "Microseconds-nanoseconds all-optical switching of visible-near infrared, 0.5 ¹m{1.55 ¹m. Lasers with dye-doped nematic liquid crystals," Mole. Cryst. Liq. Cryst., Vol. 527, 109-118, 2010. Google Scholar
75. Khoo, I. C., J. Liou, M. V. Stinger, and S. Zhao, "Ultrafast all-optical switching with transparent and absorptive nematic liquid crystals | implications in tunable metamaterials," Mole. Cryst. Liq. Cryst., Vol. 543, 151-159, 2011. Google Scholar
76. Shishido, A., O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, "Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by re°ection-mode analysis," J. Am. Chem. Soc., Vol. 119, 7791-7796, 1997.
doi:10.1021/ja9706312 Google Scholar
77. Khoo, I. C., A. Diaz, S. Kubo, J. Liou, M. Stinger, T. Mallouk, and J. H. Park, "Nano-dispersed organic liquid and liquid crystals for all-time-scales optical switching and tunable negative- and zero-index materials," Mole. Cryst. Liq. Cryst., Vol. 485, No. 1, 934-944, 2008.
doi:10.1080/15421400801925786 Google Scholar
78. Hwang, J., N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, "Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal," Optics Letters, Vol. 29, 2644, 2004.
doi:10.1364/OL.29.002644 Google Scholar
79. Song, L., S. Fu, Y. Liu, J. Zhou, V. G. Chigrinov, and I. C. Khoo, "Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal," Optics Letters, Vol. 38, 5040-5042, 2013.
doi:10.1364/OL.38.005040 Google Scholar
80. Khoo, I.C., S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, "Synthesis and characterization of the multi-photon absorption and excited-state properties of 4-propyl 4'-butyl diphenyl acetylene," J. Mat. Chem., Vol. 19, 7525-7531, 2009.
doi:10.1039/b905716a Google Scholar
81. Khoo, I. C. and A. Diaz, "Multiple-time-scales dynamical studies of nonlinear transmission of pulsed lasers in a multi-photon absorbing organic material," J. Opt. Soc. Am. B, Vol. 28, 1702-1710, 2011.
doi:10.1364/JOSAB.28.001702 Google Scholar
82. Khoo, I. C., A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large dynamic range optical imiting application against intense short laser pulses," J. Opt. Soc. Am. B, Vol. 21, 1234-1240, 2004.
doi:10.1364/JOSAB.21.001234 Google Scholar
83. Khoo, I. C., A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond lasers using highly nonlinear organic liquid cored fiber array," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 7, No. 5, 760-768, 2001.
doi:10.1109/2944.979336 Google Scholar
84. Khoo, I. C., "Nonlinear organic liquid cored fiber array for all-optical switching and sensor protection against short pulsed lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, No. 3, 946-951, 2008, and References therein.
doi:10.1109/JSTQE.2008.916238 Google Scholar
85. He, G. S., L.-S. Tan, Q. Zheng, and P. N. Prasad, "Multiphoton absorbing materials: Molecular designs, characterizations, and applications," Chemical Reviews, Vol. 108, No. 3, 1245{-1330, 2008, and References therein.
doi:10.1021/cr050054x Google Scholar
86. Takanashi, H., J. E. Maclennan, and N. A. Clark, "Sub 100 nanosecond pretilted planar-to-homeotropic reorientation of nematic liquid crystals under high electric field," Jpn. J. Appl. Phys., Vol. 37, No. 5, 2587-2589, 1998.
doi:10.1143/JJAP.37.2587 Google Scholar
87. Geis, M. W., R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, "30 to 50 ns liquid-crystal optical switches," Proc. SPIE, Vol. 7618, 76180J-1-76180J-5, 2010. Google Scholar
88. Pawlik, G., K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, "Infrared cylindrical cloak in nanosphere dispersed liquid crystal metamaterial," Optics Letters, Vol. 37, 1847-1849, 2012.
doi:10.1364/OL.37.001847 Google Scholar
89. Pawlik, G., G. Pawlik, W. Walasik, K. Tarnowski, A. C. Mitus, and I. C. Khoo, "Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection," Optics Letters, Vol. 39, 1744-1747, 2014.
doi:10.1364/OL.39.001744 Google Scholar
90. Jarema, M., W. Walasik, A. C. Mitus, and I. C. Khoo, "Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte carlo studies," J. Opt. Soc. Am. B, Vol. 27, No. 3, 567-576, 2010.
doi:10.1364/JOSAB.27.000567 Google Scholar
91. Pawlik, G., W. Walasik, A. C. Mitus, and I. C. Khoo, "Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monte Carlo study," Optical Materials, Vol. 33, No. 9, 1459-1463, 2011.
doi:10.1016/j.optmat.2011.02.005 Google Scholar
92. Khoo, I. C. and T. H. Lin, "Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals," Optics Letters, Vol. 37, 3225-3227, 2012.
doi:10.1364/OL.37.003225 Google Scholar
93. Chen, C.-W., H.-C. Jau, C.-T. Wang, C.-H. Lee, I. C. Khoo, and T.-H. Lin, "Random lasing in blue phase liquid crystals," Optics Express, Vol. 20, No. 21, 23978-23984, 2012.
doi:10.1364/OE.20.023978 Google Scholar
94. Khoo, I. C., K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, "Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties," Optics Express, Vol. 21, No. 4, 4319-4327, 2013.
doi:10.1364/OE.21.004319 Google Scholar
95. Chen, C. W., H. C. Jau, C. H. Lee, C. C. Li, C. T. Hou, C. W. Wu, T. H. Lin, and I. C. Khoo, "Temperature dependence of refractive index in blue phase liquid crystals," Optical Materials Express, Vol. 3, No. 5, 527-532, 2013.
doi:10.1364/OME.3.000527 Google Scholar
96. Kikuchi, H., M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, "Polymer-stabilized liquid crystal blue phases," Nat. Mater., Vol. 1, 64-68, 2002.
doi:10.1038/nmat712 Google Scholar
97. Coles, H. and M. N. Pivnenko, "Liquid crystal `blue phases' with a wide temperature range," Nature, Vol. 436, 997-1000, 2005.
doi:10.1038/nature03932 Google Scholar
98. Hisakado, Y., H. Kikuchi, T. Nagamura, and T. Kajiyama, "Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases," Adv. Mater., Vol. 17, 96, 2005.
doi:10.1002/adma.200400639 Google Scholar
99. Ge, Z., S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays," Appl. Phys. Lett., Vol. 94, 101104, 2009.
doi:10.1063/1.3097355 Google Scholar