Vol. 146
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-05-26
Efficiency Improvement of P-I-n Solar Cell by Embedding Quantum Dots
By
Progress In Electromagnetics Research, Vol. 146, 167-180, 2014
Abstract
A model of solar cell embedding quantum dots in the intrinsic layer of a p-i-n solar cell has been presented. With proper selection of material, size and fractional volume, quantum dots can provide an intermediate band between the valence and conduction bands of the matrix material, which will absorb photons with energy lower than the original bandgap to absorb more incident photons in the otherwise unused spectral irradiance. The design approach to acquire the highest efficiency of the conventional p-i-n solar cell is presented as a benchmark. Quantum dots are then embedded in the intrinsic region of the reference solar cell to improve its efficiency. InAs is chosen to implement the quantum dots, to be embedded in the p-i-n solar cell made of GaAs. With a more packed arrangement of QD's from that in the literatures, the simulation results shows that the efficiency of the conventional GaAs p-i-n solar cell can be increased by 1.05%.
Citation
Yi-Hsien Lin Jean-Fu Kiang , "Efficiency Improvement of P-I-n Solar Cell by Embedding Quantum Dots," Progress In Electromagnetics Research, Vol. 146, 167-180, 2014.
doi:10.2528/PIER14032701
http://www.jpier.org/PIER/pier.php?paper=14032701
References

1. Fonash, S. J., Solar Cell Device Physics, 2nd Ed., Academic Press, 2010.

2. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," J. Appl. Phys., Vol. 3, No. 3, 510-519, 1961.
doi:10.1063/1.1736034

3. Landsberg, P. T. and P. Baruch, "The thermodynamics of the conversion of radiation energy for photovoltaics," J. Phys. A: Math., Vol. 22, 1911-1926, 1989.
doi:10.1088/0305-4470/22/11/028

4. Solankia, C. S. and G. Beaucarneb, "Advanced solar cell concepts," Energy Sustain. Develop., Vol. 11, No. 3, 17-23, 2007.
doi:10.1016/S0973-0826(08)60573-6

5. Kayes, B. M., et al., "27.6% conversion e±ciency, a new record for single-junction solar cells under 1 sun illumination," Photovolt. Special. Conf., 4-8, 2011.

6. Green, M. A., et al., "Solar cell efficiency tables (version 42)," Prog. Photovolt. Res. Appl., Vol. 21, No. 5, 827-837, 2013.

7. Green, M. A., "Third generation photovoltaics: Ultra-high conversion efficiency at low cost," Prog. Photovolt. Res. Appl., Vol. 9, 123-135, 2001.
doi:10.1002/pip.360

8. Newman, F., et al., "Optimization of inverted metamorphic multijunction solar cells for field-deployed concentrating PV systems," IEEE Photovolt. Special. Conf., 1611-1616, 2009.

9. Luque, A. and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 93-107, John Wiley, 2003.
doi:10.1002/0470014008

10. Hu, W. G., T. Inoue, O. Kojima, and T. Kita, "Effects of absorption coe±cients and intermediate-band filling in InAs/GaAs quantum dot solar cells," Applied Phys. Lett., Vol. 97, 193106, 2010.
doi:10.1063/1.3516468

11. Luque, A., A. Marti, and C. Stanley, "Understanding intermediate-band solar cells," Nature Photon., Vol. 6, 146-152, 2012.
doi:10.1038/nphoton.2012.1

12. Nakata, Y., Y. Sugiyama, and M. Sugawara, Molecular Beam Epitaxy Growth of Self-assembled InAs/GaAs Quantum Dots, Ch. 2, Academic, 1990.

13. Bhattacharya, P., S. Ghosh, and A. D. Stiff-Roberts, "Quantum dot opto-electronic devices," Ann. Rev. Materials Res., Vol. 34, 1-40, 2004.
doi:10.1146/annurev.matsci.34.040203.111535

14. Cuadra, L. , A. Marti, and A. Luque, "Present status of intermediate band solar cell research," Thin Solid Films., Vol. 451-452, 593-599, 2004.
doi:10.1016/j.tsf.2003.11.047

15. Raffaelle, R. P., et al., "Multi-junction solar cell spectral tuning with quantum dots," IEEE World Conf. Photovolt. Energy Conv., Vol. 1, 162-166, 2006.

16. Gorji, N. E., M. H. Zandic, M. Houshmandc, and M. Shokri, "Transition and recombination rates in intermediate band solar cells," Scientia Iranica, Vol. 19, No. 3, 806-811, 2012.
doi:10.1016/j.scient.2012.02.005

17. Lin, C. C., M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, "Numerical study of quantum-dot-embedded solar cells," IEEE J. Select. Topics Quantum Electron., Vol. 19, No. 5, 1-10, 2013.

18. Marti, A., L. Cuadra, and A. Luque, "Quantum dot intermediate band solar cell," IEEE Photovolt. Special. Conf., 940-943, 2000.
doi:10.1109/PVSC.2000.916039

19. Lin, A. S., "Modeling of solar cell e±ciency improvement using optical gratings and intermediate absorption band,", Ph.D. Thesis, University of Michigan, 2010.

20. Marti, A., L. Cuadra, and A. Luque, "Design constraints of the quantum-dot intermediate band solar cell," Physica E, Vol. 14, No. 1-2, 150-157, 2002.
doi:10.1016/S1386-9477(02)00368-5

21. Pellegrini, G., G. Mattei, and P. Mazzoldi, "Finite depth square well model: Applicability and limitations," J. Appl. Phys., Vol. 97, No. 7, 193106, 2005.
doi:10.1063/1.1868875

22. Horiguchi, S., "Validity of effective mass theory for energy levels in Si quantum wires," Physica B, Vol. 227, No. 1-4, 336-338, 1996.
doi:10.1016/0921-4526(96)00435-8

23. Nanda, K. K., F. E. Kruis, and H. Fissan, "Energy levels in embedded semiconductor nanoparticles and nanowires," Nano Lett., Vol. 1, No. 11, 605-611, 2011.
doi:10.1021/nl0100318

24. Baskoutas, S. and A. F. Terzis, "Size-dependent band gap of colloidal quantum dots," J. Appl. Phys., Vol. 99, No. 1, 013708, 2006.
doi:10.1063/1.2158502

25. Kasap, S. and P. Capper, Handbook of Electronic and Photonic Materials, 54-327, Springer, 2006.

26. Holmstrom, P., L. Thylen, and A. Bratkovsky, "Dielectric function of quantum dots in the strong confnement regime," J. Appl. Phys., Vol. 107, No. 6, 064307, 2010.
doi:10.1063/1.3309343

27. Boyd, R., "Nonlinear Optics," Elsevier, 135-206, 2008.

28. Luque, A., A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, and P. Diaz, "Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band," J. Appl. Phys., Vol. 99, 094503, 2006.
doi:10.1063/1.2193063

29. Marti, A., L. Cuadra, and A. Luque, "Partial filling of a quantum dot intermediate band for solar cells," IEEE Trans. Electron. Dev., Vol. 48, No. 10, 2394-2399, 2002.
doi:10.1109/16.954482

30. alik, E. D., Handbook of Optical Constants of Solids, Academic Press, 1998.