1. Fonash, S. J., Solar Cell Device Physics, 2nd Ed., Academic Press, 2010.
2. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," J. Appl. Phys., Vol. 3, No. 3, 510-519, 1961.
doi:10.1063/1.1736034 Google Scholar
3. Landsberg, P. T. and P. Baruch, "The thermodynamics of the conversion of radiation energy for photovoltaics," J. Phys. A: Math., Vol. 22, 1911-1926, 1989.
doi:10.1088/0305-4470/22/11/028 Google Scholar
4. Solankia, C. S. and G. Beaucarneb, "Advanced solar cell concepts," Energy Sustain. Develop., Vol. 11, No. 3, 17-23, 2007.
doi:10.1016/S0973-0826(08)60573-6 Google Scholar
5. Kayes, B. M., et al. "27.6% conversion e±ciency, a new record for single-junction solar cells under 1 sun illumination," Photovolt. Special. Conf., 4-8, 2011. Google Scholar
6. Green, M. A., et al. "Solar cell efficiency tables (version 42)," Prog. Photovolt. Res. Appl., Vol. 21, No. 5, 827-837, 2013. Google Scholar
7. Green, M. A., "Third generation photovoltaics: Ultra-high conversion efficiency at low cost," Prog. Photovolt. Res. Appl., Vol. 9, 123-135, 2001.
doi:10.1002/pip.360 Google Scholar
8. Newman, F., F., et al., "Optimization of inverted metamorphic multijunction solar cells for field-deployed concentrating PV systems," IEEE Photovolt. Special. Conf., 1611-1616, 2009. Google Scholar
9. Luque, A. and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 93-107, John Wiley, 2003.
doi:10.1002/0470014008
10. Hu, W. G., T. Inoue, O. Kojima, and T. Kita, "Effects of absorption coe±cients and intermediate-band filling in InAs/GaAs quantum dot solar cells," Applied Phys. Lett., Vol. 97, 193106, 2010.
doi:10.1063/1.3516468 Google Scholar
11. Luque, A., A. Marti, and C. Stanley, "Understanding intermediate-band solar cells," Nature Photon., Vol. 6, 146-152, 2012.
doi:10.1038/nphoton.2012.1 Google Scholar
12. Nakata, Y., Y. Sugiyama, and M. Sugawara, Molecular Beam Epitaxy Growth of Self-assembled InAs/GaAs Quantum Dots, Ch. 2, Academic, 1990.
13. Bhattacharya, P., S. Ghosh, and A. D. Stiff-Roberts, "Quantum dot opto-electronic devices," Ann. Rev. Materials Res., Vol. 34, 1-40, 2004.
doi:10.1146/annurev.matsci.34.040203.111535 Google Scholar
14. Cuadra, L., A. Marti, and A. Luque, "Present status of intermediate band solar cell research," Thin Solid Films., Vol. 451-452, 593-599, 2004.
doi:10.1016/j.tsf.2003.11.047 Google Scholar
15. Raffaelle, R. P., et al. "Multi-junction solar cell spectral tuning with quantum dots," IEEE World Conf. Photovolt. Energy Conv., Vol. 1, 162-166, 2006. Google Scholar
16. Gorji, N. E., M. H. Zandic, M. Houshmandc, and M. Shokri, "Transition and recombination rates in intermediate band solar cells," Scientia Iranica, Vol. 19, No. 3, 806-811, 2012.
doi:10.1016/j.scient.2012.02.005 Google Scholar
17. Lin, C. C., M. H. Tan, C. P. Tsai, K. Y. Chuang, and T. S. Lay, "Numerical study of quantum-dot-embedded solar cells," IEEE J. Select. Topics Quantum Electron., Vol. 19, No. 5, 1-10, 2013. Google Scholar
18. Marti, A., L. Cuadra, and A. Luque, "Quantum dot intermediate band solar cell," IEEE Photovolt. Special. Conf., 940-943, 2000.
doi:10.1109/PVSC.2000.916039 Google Scholar
19. Lin, A. S., "Modeling of solar cell e±ciency improvement using optical gratings and intermediate absorption band,", Ph.D. Thesis, University of Michigan, 2010. Google Scholar
20. Marti, A., L. Cuadra, and A. Luque, "Design constraints of the quantum-dot intermediate band solar cell," Physica E, Vol. 14, No. 1-2, 150-157, 2002.
doi:10.1016/S1386-9477(02)00368-5 Google Scholar
21. Pellegrini, G., G. Mattei, and P. Mazzoldi, "Finite depth square well model: Applicability and limitations," J. Appl. Phys., Vol. 97, No. 7, 193106, 2005.
doi:10.1063/1.1868875 Google Scholar
22. Horiguchi, S., "Validity of effective mass theory for energy levels in Si quantum wires," Physica B, Vol. 227, No. 1-4, 336-338, 1996.
doi:10.1016/0921-4526(96)00435-8 Google Scholar
23. Nanda, K. K., F. E. Kruis, and H. Fissan, "Energy levels in embedded semiconductor nanoparticles and nanowires," Nano Lett., Vol. 1, No. 11, 605-611, 2011.
doi:10.1021/nl0100318 Google Scholar
24. Baskoutas, S. and A. F. Terzis, "Size-dependent band gap of colloidal quantum dots," J. Appl. Phys., Vol. 99, No. 1, 013708, 2006.
doi:10.1063/1.2158502 Google Scholar
25. Kasap, S. and P. Capper, Handbook of Electronic and Photonic Materials, 54-327, Springer, 2006.
26. Holmstrom, P., L. Thylen, and A. Bratkovsky, "Dielectric function of quantum dots in the strong confnement regime," J. Appl. Phys., Vol. 107, No. 6, 064307, 2010.
doi:10.1063/1.3309343 Google Scholar
27. Boyd, R., "Nonlinear Optics," Elsevier, 135-206, 2008. Google Scholar
28. Luque, A., A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, and P. Diaz, "Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band," J. Appl. Phys., Vol. 99, 094503, 2006.
doi:10.1063/1.2193063 Google Scholar
29. Marti, A., L. Cuadra, and A. Luque, "Partial filling of a quantum dot intermediate band for solar cells," IEEE Trans. Electron. Dev., Vol. 48, No. 10, 2394-2399, 2002.
doi:10.1109/16.954482 Google Scholar
30. alik, E. D., Handbook of Optical Constants of Solids, Academic Press, 1998.