1. Horodecki, R., P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum entanglement," Rev. Mod. Phys., Vol. 81, 865-942, 2009.
doi:10.1103/RevModPhys.81.865 Google Scholar
2. Fukuda, D., G. Fujii, T. Numata, K. Amemiya, et al. "Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling," Opt. Express, Vol. 19, No. 2, 870-875, 2011.
doi:10.1364/OE.19.000870 Google Scholar
3. Namekata, N., Y. Takahashi, G. Fujii, D. Fukuda, et al. "Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength," Nature Photonics, Vol. 4, 655-660, 2010.
doi:10.1038/nphoton.2010.158 Google Scholar
4. Ekert, A. K., "Quantum cryptography based on Bells theorem," Phys. Rev. Lett., Vol. 67, 661-663, 1991.
doi:10.1103/PhysRevLett.67.661 Google Scholar
5. Goltsman, G. N., O. Okunev, G. Chulkova, A. Lipatov, et al. "Picosecond superconducting singlephoton optical detector," Appl. Phys. Lett., Vol. 79, No. 6, 705-707, August 2001.
doi:10.1063/1.1388868 Google Scholar
6. Eisenmenger, W., Superconducting Tunnelling Junctions as Phonon Generators and Detectors, 2010.
7. Irwin, K. D., "An application of electrothermal feedback for high resolution cryogenic particle detection," Appl. Phys. Lett., Vol. 66, April 1995. Google Scholar
8. Lita, A. E., A. J. Miller, and S. W. Nam, "Counting near-infrared single-photons with 95% efficiency," Opt. Express, Vol. 16, 3032-3040, 2008.
doi:10.1364/OE.16.003032 Google Scholar
9. Day, P. K., H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature, Vol. 425, 817-821, October 2003. Google Scholar
10. Mazin, B. A., B. Bumble, and P. K. Day, "Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors," Appl. Phys. Lett., Vol. 89, No. 22, 222507, 2006.
doi:10.1063/1.2390664 Google Scholar
11. Noroozian, O., P. K. Day, B. H. Eom, H. G. LeDuc, et al. "Crosstalk reduction for superconducting microwave resonator arrays," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, May 2012.
doi:10.1109/TMTT.2012.2187538 Google Scholar
12. Mattis, D. C. and J. Bardeen, "Theory of the anomalous skin effect in normal and superconducting metals," Phys. Rev., Vol. 111, 412-417, 1958.
doi:10.1103/PhysRev.111.412 Google Scholar
13. Tinkham, M., Introduction to Superconductivity, 2nd Ed., McGraw-Hill, New York, 1996.
14. Barends, R., J. J. A. Baselmans, J. N. Hovenier, J. R. Gao, et al. "Niobium and Tantalum high Q resonators for photon detectors," IEEE Trans. Appl. Supercond., Vol. 17, 263, 2007.
doi:10.1109/TASC.2007.898541 Google Scholar
15. Quaranta, O., T.W. Cecil, and A. Miceli, "Tungsten silicide alloys for microwave kinetic inductance detectors," IEEE Trans. Appl. Supercond., Vol. 23, No. 3, 2400104, June 2013.
doi:10.1109/TASC.2012.2232963 Google Scholar
16. Gao, J. S., M. Daal, A. Vayonakis, S. Kumar, et al. "Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators," Appl. Phys. Lett., Vol. 92, 152505, 2008.
doi:10.1063/1.2906373 Google Scholar
17. Li, H. J., Y. W. Wang, L. F. Wei, P. J. Zhou, et al. "Experimental demonstrations of high-Q superconducting coplanar waveguide resonators," Chinese Sci. Bull., Vol. 58, No. 1, 1-5, 2012. Google Scholar
18. Hammer, G., S. Wuensch, M. Roesch, K. Ilin, et al. "Coupling of microwave resonators to feed lines," IEEE Trans. Appl. Supercond., Vol. 19, No. 3, June 2009.
doi:10.1109/TASC.2009.2018476 Google Scholar
19. Mazin, B. A., Microwave Kinetic Inductance Detectors, 2005.
20. Ponchak, G. E., J. Papapolymerou, and M. M. Tentzeris, "Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 713, 2005. Google Scholar
21. Kumar, S., J. S. Gao, J. Zmuidzinas, B. A. Mazin, et al. "Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators," Appl. Phys. Lett., Vol. 92, 123503, 2008.
doi:10.1063/1.2894584 Google Scholar
22. Wisbey, D. S., J. S. Gao, M. R. Vissers, F. C. S. da Silva, et al. "Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides," J. Appl. Phys., Vol. 108, 093918, 2010.
doi:10.1063/1.3499608 Google Scholar
23. Khalil, M. S., F. C. Wellstood, and K. D. Osborn, "Loss dependence on geometry and applied power in superconducting coplanar resonators," IEEE Trans. Appl. Supercond., Vol. 21, No. 3, June 2011.
doi:10.1109/TASC.2010.2090330 Google Scholar
24. Phillips, W. A., "Two-level states in glasses," Rep. Prog. Phys., Vol. 50, 1657-1708, 1987.
doi:10.1088/0034-4885/50/12/003 Google Scholar
25. Phillips, W. A., "Tunneling states in amorphous solids," J. Low Temp. Phys., Vol. 7, 351, 1972.
doi:10.1007/BF00660072 Google Scholar
26. Anderson, P. W., B. I. Halperin, and C. M. Varma, "Anomalous low-temperature thermal properties of glasses and spin glasses," Philos. Mag., Vol. 25, No. 1, 1972.
doi:10.1080/14786437208229210 Google Scholar
27. Gao, J., M. R. Vissers, M. O. Sandberg, F. C. S. da Silva, et al. "A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics," Appl. Phys. Lett., Vol. 101, 142602, 2012.
doi:10.1063/1.4756916 Google Scholar
28. Wuensch, S., R. Prinz, C. Groetsch, and M. Siegel, "Optimized microwave LEKID arrays for high-resolution applications," IEEE Trans. Appl. Supercond., Vol. 23, No. 3, June 2013.
doi:10.1109/TASC.2013.2251056 Google Scholar