1. Zhang, K. and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, Springer, Berlin Heidelberg, 2008.
2. Mira, F., A. A. San Blas, V. E. Boria, L. J. Rogla, and B. Gimeno, "Wideband generalized admittance matrix representation for the analysis and design of waveguide filters with coaxial excitation," Radio Science, Vol. 48, No. 1, 50-60, 2013.
doi:10.1002/rds.20013 Google Scholar
3. Dillon, B. M. and A. A. P. Gibson, "Finite element solution of dielectric-ferrite resonators," Radio Science, Vol. 31, No. 5, 1191-1198, 1996.
doi:10.1029/96RS01365 Google Scholar
4. Silvester, P., "Finite element solution of homogeneous waveguide problems," Alta Frequenza, Vol. 38, 313-317, 1969. Google Scholar
5. Rahman, B. M. and J. B. Davies, "Penalty function improvement of waveguide solution by finite elements," IEEE Trans. on Microwave Theory and Tech., Vol. 32, 922-928, 1984.
doi:10.1109/TMTT.1984.1132789 Google Scholar
6. Winkler, J. R. and J. B. Davies, "Elimination of spurious modes in finite element analysis," J. Comput. Phys., Vol. 56, 1-14, 1984.
doi:10.1016/0021-9991(84)90079-2 Google Scholar
7. Kobelansky, A. J. and J. P. Webb, "Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields," Electron. Lett., Vol. 22, 569-570, 1986.
doi:10.1049/el:19860387 Google Scholar
8. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
9. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.
10. Nedelec, J. C., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415 Google Scholar
11. Nedelec, J. C., "A new family of mixed finite elements in R3," Numer. Math., Vol. 50, 57-81, 1986.
doi:10.1007/BF01389668 Google Scholar
12. Zhou, X. and G. Pan, "Application of physical spline finite element method (PSFEM) to fullwave analysis of waveguides," Progress In Electromagnetics Research, Vol. 60, 19-41, 2006.
doi:10.2528/PIER05081102 Google Scholar
13. Boffi, D., "Finite element approximation of eigenvalue problems," Acta Numerica, Vol. 19, 1-120, 2010.
doi:10.1017/S0962492910000012 Google Scholar
14. Bondeson, A., T. Rylander, and P. Ingelstr, Computational Electromagnetics, Springer, New York, 2005.
15. Kikuchi, F., "Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism," Comp. Meth. Appl. Mech. Engng., Vol. 64, 509-521, 1987. Google Scholar
16. Venkatarayalu, N. V. and J. F. Lee, "Removal of spurious DC modes in edge element solutions for modeling three-dimensional resonators," IEEE Trans. on Microwave Theory and Tech., Vol. 54, 3019-3025, 2006.
doi:10.1109/TMTT.2006.877057 Google Scholar
17. Goncalves, M. S., F. J. Arnold, L. L. Bravo-Roger, and T. S. Santos, "A novel approach to suppress the DC modes in eigenvalue problems using the finite element method," Microw. Opt. Techn. Lett., Vol. 55, 210-212, 2013.
doi:10.1002/mop.27256 Google Scholar
18. Fratalocchi, A. and G. Ruocco, "Single-molecule imaging with X-ray free-electron lasers: Dream or reality?," Phys. Rev. Lett., Vol. 106, 105504, 2013. Google Scholar
19. Gentilini, S., A. Fratalocchi, L. Angelani, G. Ruocco, and C. Conti, "Ultrashort pulse propagation and the Anderson localization," Opt. Lett., Vol. 34, No. 2, 130-132, 2009.
doi:10.1364/OL.34.000130 Google Scholar
20. Fratalocchi, A., C. Conti, and G. Ruocco, "Three-dimensional ab initio investigation of light-matter interaction in Mie lasers," Physical Review A, Vol. 78, 013806, 2008.
doi:10.1103/PhysRevA.78.013806 Google Scholar
21. Brenner, S. C., F. Li, and L. Sung, "Nonconforming Maxwell eigensolvers," J. Sci. Comput., Vol. 40, 51-85, 2009.
doi:10.1007/s10915-008-9266-9 Google Scholar
22. Ciarlet, P. G., "Basic error estimates for elliptic problem," Handbook of Numerical Analysis, Volume II, Finite Element Methods (Part 1), Elsevier Science Publishers, North-Holland, 1991. Google Scholar
23. Boffi, D., P. Fernandes, L. Gastaldi, and I. Perugia, "Computational models of electromagnetic resonators: Analysis of edge element approximation," SIAM J. Numer. Anal., Vol. 36, 1264-1290, 1999.
doi:10.1137/S003614299731853X Google Scholar
24. Costabel, M. and M. Dauge, "A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains," Math. Methods Appl. Sci., Vol. 12, 365-368, 1990.
doi:10.1002/mma.1670120406 Google Scholar
25. Costabel, M. and M. Dauge, "Maxwell and Lame eigenvalues on polyhedra," Math. Methods Appl. Sci., Vol. 22, 243-258, 1999.
doi:10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0 Google Scholar
26. Costabel, M. and M. Dauge, "Singularities of electromagnetic fields in polyhedral domains," Arch. Ration. Mech. Anal., Vol. 151, 221-276, 2000.
doi:10.1007/s002050050197 Google Scholar