1. Suppes, P. and B. Han, "Brain-wave representation of words by superposition of a few sine waves," Proc. Natl. Acad. Sci., Vol. 97, No. 15, 8738-8748, Jul. 18, 2000.
doi:10.1073/pnas.140228397 Google Scholar
2. Pasley, B. N., S. V. David, N. Mesgarani, A. Flinker, S. A. Shamma, et al. "Reconstructing speech from human auditory cortex," PLoS Biol.., Vol. 10, No. 1, e1001251, 2012, doi: 10.1371/journal.pbio.1001251.
doi:10.1371/journal.pbio.1001251 Google Scholar
3. Hoole, P. R. P., K. Pirapaharan, S. A. Basar, R. Ismail, D. L. D. A. Liyanage, S. S. H. M. U. Senanayake, and S. R. H. Hoole, "Autism, EEG and brain electromagnetics research," 2012 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 541-543, Dec. 17–19, 2012, doi: 10.1109/IECBES.2012.6498036. Google Scholar
4. Yasuhara, A., "Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD)," Brain and Development, Vol. 32, No. 10, 791-798, Nov. 2010, ISSN 0387-7604, 10.1016/j.braindev.2010.08.010.
doi:10.1016/j.braindev.2010.08.010 Google Scholar
5. F¨unfgeld, E. W., M. Baggen, P. Nedwidek, B. Richstein, and G. Mistlberger, "Double-blind study with phosphatidylserine (PS) in parkinsonian patients with senile dementia of Alzheimer’s type (SDAT)," Prog. Clin. Biol. Res., Vol. 317, 1235-1246, 1989. Google Scholar
6. Ponomareva, N. V., N. D. Selesneva, and G. A. Jarikov, "EEG alterations in subjects at high familial risk for Alzheimer’s disease," Neuropsychobiology, Vol. 48, 152-159, 2003, doi: 10.1159/000073633.
doi:10.1159/000073633 Google Scholar
7. NeuroSky Inc. "Brain wave signal (EEG) of NeuroSky, Inc.,", Dec. 2009. Google Scholar
8. Yasui, Y., "A brainwave signal measurement and data processing technique for daily life applications," J. Physiol. Anthropol., Vol. 28, No. 3, 145-150, 2009.
doi:10.2114/jpa2.28.145 Google Scholar
9. Fleur, K. L., K. Cassady, A. Doud, K. Shades, E. Rogin, and B. He, "Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface," J. Neural. Eng., Vol. 10, 046003, Jun. 4, 2013, doi: 10.1088/1741-2560/10/4/046003. Google Scholar
10. Doud, A. J., J. P. Lucas, M. T. Pisansky, and B. He, "Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface," PLoS ONE, Vol. 6, e26322, 2011.
doi:10.1371/journal.pone.0026322 Google Scholar
11. Galan, F., M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips, and R. del Millan, "A brainactuated wheelchair: Asynchronous and non-invasive brain-computer interfaces for continuous control of robots," Clin. Neurophysiol., 1192159-1192169, 2008. Google Scholar
12. Popescu, F., S. Fazli, Y. Badower, B. Blankertz, and K.-R. Muller, "Single trial classification of motor imagination using 6 dry EEG electrodes," PLoS ONE, Vol. 2, No. 7, e637, 2007, doi: 10.1371/journal.pone.0000637.
doi:10.1371/journal.pone.0000637 Google Scholar
13. Grozea, C., C. D. Voinescu, and S. Fazli, "Bristle-sensors — Low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications," J. Neural. Eng., Vol. 8, 025008, 2011, doi: 10.1088/1741-2560/8/2/025008.
doi:10.1088/1741-2560/8/2/025008 Google Scholar
14. Zhu, J. and D. Jiao, "A unified finite-element solution from zero frequency to microwave frequencies for full-wave modeling of large scale three-dimensional on-chip interconnect structures," IEEE Trans. Adv. Packag., Vol. 31, No. 4, 873-881, Nov. 2008. Google Scholar
15. Gope, D., A. Ruehli, and V. Jandhyala, "Solving low-frequency EM-CKT problems using the PEEC method," IEEE Trans. Adv. Packag., Vol. 30, No. 2, 313-320, May 2007.
doi:10.1109/TADVP.2007.896000 Google Scholar
16. Peratta, C. and A. Peratta, "Dielectric properties of biological tissues," Topics in Engineering, Modelling the Human Body Exposure to ELF Electric Fields, Vol. 47, 21-40, 2010. Google Scholar
17. Asami, K., "Dielectric properties of biological tissues in which cells are connected by communicating junctions," Journal of Physics D — Applied Physics, Vol. 40, No. 12, 3718-3727, Jun. 21, 2007, doi: 10.1088/0022-3727/40/12/027.
doi:10.1088/0022-3727/40/12/027 Google Scholar
18. Kuang, W. and S. O. Nelson, "Low-frequency dielectric properties of biological tissues: A review with some new insights," IEEE Transactions of the ASAE, Vol. 41, No. 1, 173-184, Jan.–Feb. 1998.
doi:10.13031/2013.17142 Google Scholar
19. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues. 1. Literature survey," Physics in Medicine and Biology, Vol. 41, No. 11, 2231-2249, Nov. 1996, doi: 10.1088/0031-9155/41/11/001.
doi:10.1088/0031-9155/41/11/001 Google Scholar
20. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 2. Measurements in the frequency range 10Hz to 20GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, Nov. 1996, doi: 10.1088/0031-9155/41/11/002.
doi:10.1088/0031-9155/41/11/002 Google Scholar
21. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, Nov. 1996, doi: 10.1088/0031-9155/41/11/003.
doi:10.1088/0031-9155/41/11/003 Google Scholar
22. Bossetti, C. A., M. J. Birdno, and W. M. Grill, "Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation," Journal of Neural Engineering, Vol. 5, No. 1, 44-53, Mar. 2008, doi: 10.1088/1741-2560/5/1/005.
doi:10.1088/1741-2560/5/1/005 Google Scholar
23. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 82-101, Wiley-VCH, Mar. 1998.
doi:10.1002/9783527618156