1. Than, T. D., G. Alici, H. Zhou, and W. Li, "A review of localization systems for robotic endoscopic capsules," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 9, 2387-2399, 2012.
doi:10.1109/TBME.2012.2201715 Google Scholar
2. Hu, C., M. Q. Meng, and M. Mandal, "magnetic localization and orientation technique for capsule endoscopy," IEEE ‘IROS’, 628-633, 2005. Google Scholar
3. Salerno, M., G. Ciuti, G. Lucarini, R. Rizzo, P. Valdastri, A. Menciassi, A. Landi, and P. Dario, "A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing," Measurement Science and Technology, Vol. 23, 015701, 2012.
doi:10.1088/0957-0233/23/1/015701 Google Scholar
4. Pahlavan, K., Y. Ye, R. Fu, and U. Khan, "Challenges in channel measurement and modeling for RF localization inside the human body," International Journal of Embedded and Real-Time Communication Systems, Vol. 3, No. 3, 18-37, 2012.
doi:10.4018/jertcs.2012070102 Google Scholar
5. Fischer, D., R. Shreiber, G. Meron, M. Frisch, H. Jacob, A. Glukhovsky, and A. Engel, "Localization of the wireless capsule endoscope in its passage through theGI tract," Gastrointestinal Endoscopy, Vol. 53, AB126, 2001. Google Scholar
6. Fischer, D., "Capsule endoscopy: The localization system," Gastrointestinal Endoscopy Clin., North Amer., Vol. 14, 25-31, 2004.
doi:10.1016/j.giec.2003.10.020 Google Scholar
7. Abbasi, Q. H., A. Sani, A. Alomainy, and Y. Hao, "Numerical characterization and modeling of subject-specific ultrawideband body-centric radio channels and systems for healthcare applications," IEEE Transactions on Information Technology in Biomedicine — TITB, Vol. 16, No. 2, 221-227, 2012.
doi:10.1109/TITB.2011.2177526 Google Scholar
8. Fort, A., C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "An ultra-wideband body area propagation channel model — From statistics to implementation," IEEE Trans. on Microwave Theory and Techniques, Vol. 54, No. 4, 1820-1826, 2006.
doi:10.1109/TMTT.2006.872066 Google Scholar
9. Fort, A., J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "Ultra-wideband channel model for communication around the human body," IEEE Journal on Selected Areas in Communications, Vol. 24, No. 4, 927-933, 2006.
doi:10.1109/JSAC.2005.863885 Google Scholar
10. Liu, L., R. D’Errico, L. Ouvry, P. De Doncker, and C. Oestges, "Dynamic channel modeling at 2.4GHz for on-body area networks," Advances in Electronics and Telecommunications, Vol. 2, No. 4, 18-27, 2011. Google Scholar
11. Takada, J., T. Aoyagi, K. Takizawa, N. Katayama, H. Sawada, T. Kobayashi, K. Y. Yazdandoost, H. Li, and R. Kohno, "Static propagation and channel models in body area," COST 2100 6th Management Committee Meeting, Lille, France, 2008. Google Scholar
12. Aoyagi, T., K. Takizawa, T. Kobayashi, J. Takada, and R. Kohno, "Development of a WBAN channel model for capsule endoscopy," Proceedings of the Antennas and Propagation Society International Symposium, 1-4, 2009. Google Scholar
13. Kiourti, A., K. A. Psathas, and K. S. Nikita, "Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges C," Wiley Bioelectromagnetics, Vol. 35, No. 1, 1-15, 2014.
doi:10.1002/bem.21813 Google Scholar
14. Basar, M. R., F. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, and L. Mohamed, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013.
doi:10.2528/PIER12091203 Google Scholar
15. Lopez-Linares Roman, K., G. Vermeeren, A. Thielens, W. Joseph, and L. Martens, "Characterization of path loss and absorption for a wireless radio frequency link between an in-body endoscopy capsule and a receiver outside the body," EURASIP Journal on Wireless Communications and Networking, Vol. 21, 2014. Google Scholar
16. Kurup, D., W. Joseph, G. Vermeeren, and L. Martens, "Path loss model for in-body communication in homogeneous human muscle tissue," Electronics Letters, Vol. 45, No. 9, 453-454, 2009.
doi:10.1049/el.2009.3484 Google Scholar
17. Xu, L. S., M. Q. H. Meng, and Y. W. Chan, "Effects of dielectric parameters of human body on radiation characteristics of ingestible wireless device at operating frequency of 430 MHz," IEEE Transactions on Biomedical Engineering, Vol. 56, No. 8, 2083-2094, 2009.
doi:10.1109/TBME.2009.2021157 Google Scholar
18. Wang, L., C. Hu, T. L. Tian, M. Li, and M. Q. H. Meng, "A novel radio propagation radiation model for location of the capsule in GI tract," Proc. IEEE Int. Conf. Rob. Biomimetics, 2332-2337, 2009. Google Scholar
19. Swar, P., K. Pahlavan, and U. Khan, "Accuracy of localization system inside human body using a fast FDTD simulation technique," 6th International Symposium on Medical Information and Communication Technology (ISMICT), 1-6, 2012. Google Scholar
20. Støa, S., R. Chavez-Santiago, and I. Balasingham, "An ultra wideband communication channel model for the human abdominal region," GLOBECOM Workshops (GC Wkshps), 246-250, 2010. Google Scholar
21. Sayrafian-Pour, K., W.-B. Yang, J. Hagedorn, J. Terrill, and K. Y. Yazdandoost, "A statistical path loss model for medical implant communication channels," IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2995-2999, Sep. 13–16, 2009. Google Scholar
22. Nadimi, E. S. and V. Tarokh, "Bayesian source localization in networks with heterogeneous transmission medium," Navigation, Vol. 59, No. 3, 163-175, Washington, 2012.
doi:10.1002/navi.13 Google Scholar
23. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Report N.AL/OE-TR-1996-0037, Occupational and Environmental Health Directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas, USA, 1996, Available: http://www.itis.ethz.ch/itis-for-health/tissue-properties/database/dielectric-properties/. Google Scholar
24. Theilmann, P. T., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.
doi:10.2528/PIERB11112111 Google Scholar
25. Thiel, F. and F. Seifert, "Noninvasive probing of the human body with electromagnetic pulses: Modeling of the signal path," J. Appl. Phys., Vol. 105, No. 4, 044904-1-044904-9, 2009.
doi:10.1063/1.3077299 Google Scholar
26. Varotto, G. and E. M. Staderini, "A 2D simple attenuation model for EM waves in human tissues: Comparison with a FDTD 3D simulator for UWB medical radar," IEEE International Conference on UltraWideband (ICUWB), Vol. 3, 1-4, 2008. Google Scholar
27. Pozar, D. M., Microwave Engineering, 4th Edition, JohnWiley & Sons, Inc., 2011.
28. Takizawa, K., H. Hagiwara, and K. Hamaguchi, "Path-loss estimation of wireless channels in capsule endoscopy from X-ray CT images," 33rd Annual International Conference of the IEEE EMBS, 2242-2245, Boston, Massachusetts, USA, Aug. 30–Sep. 3, 2011. Google Scholar
29. Zhao, J., D. Liao, and B. P. McMahon, "Functional luminal imaging probe geometric and histomorphologic analysis of abdominal wall wound induced by different trocars in pigs," Surg. Endosc., Vol. 23, 1004-1012, 2009.
doi:10.1007/s00464-008-0105-8 Google Scholar
30. Cheng, L., C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple, "A survey of localization in wireless sensor network," Int. J. Distrib. Sens. Netw., Vol. 2012, 1-12, 2012.
doi:10.1155/2012/962523 Google Scholar
31. Orfanidis, S. J., Electromagnetic Waves and Antennas, Online Book, 1999.