Vol. 153
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-10-22
Equivalent-Circuit Models for Efficient Transmission and Dispersion Analyses of Multi-State Periodic Structures
By
Progress In Electromagnetics Research, Vol. 153, 93-102, 2015
Abstract
An equivalent-circuit model for a reconfigurable unit cell is proposed. This circuit model facilitates fast prediction of scattering parameters and dispersion analyses of a reconfigurable periodic structure. The cutoff frequencies obtained using equivalent-circuit models are in excellent agreement with those from measurements and full-wave numerical simulations. The proposed circuit model is then modified to include non-ideal, commercial RF FET switches. The effect of such a switch in each state, On or Off, is modeled by a frequency-dependant impedance, derived from the scattering parameters of the switch. The proposed technique can be used to analyze a reconfigurable periodic structure with any type of switches. For the structure with 24 unit cells considered here, the equivalent circuit model is about five orders of magnitude faster than full-wave simulations.
Citation
Ladislau Matekovits, Dushmantha Thalakotuna, Karu P. Esselle, Stuart G. Hay, and Michale Heimlich, "Equivalent-Circuit Models for Efficient Transmission and Dispersion Analyses of Multi-State Periodic Structures," Progress In Electromagnetics Research, Vol. 153, 93-102, 2015.
doi:10.2528/PIER15070801
References

1. Eleftheriades, G., A. Iyer, and P. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 12, 2702-2712, Dec. 2002.
doi:10.1109/TMTT.2002.805197

2. Sor, J., Y. Qian, and T. Itoh, "Miniature low-loss CPW periodic structures for filter applications," IEEE Trans. on Microwave Theory and Tech., Vol. 49, No. 12, 2336-2341, Dec. 2001.
doi:10.1109/22.971618

3. Karim, M., A.-Q. Liu, A. Alphones, and A. Yu, "A reconfigurable micromachined switching filter using periodic structures," IEEE Trans. on Microwave Theory and Tech., Vol. 55, No. 6, 1154-1162, Jun. 2007.
doi:10.1109/TMTT.2007.897670

4. Baccarelli, P., C. Di Nallo, S. Paulotto, and D. Jackson, "A full-wave numerical approach for modal analysis of 1-D periodic microstrip structures," IEEE Trans. on Microwave Theory and Tech., Vol. 54, No. 4, 1350-1362, Jun. 2006.
doi:10.1109/TMTT.2006.871353

5. Lee, H. and J. Kim, "Unit cell approach to full-wave analysis of meander delay line using FDTD periodic structure modeling method," IEEE Trans. on Advanced Packaging, Vol. 25, No. 2, 215-222, May 2002.
doi:10.1109/TADVP.2002.803272

6. Matekovits, L., G. Vecchi, M. Bercigli, and M. Bandinelli, "Efficient numerical analysis of large planar high impedance surface by the synthetic function expansion (SFX) technique," Microwave and Optical Technology Letters, Vol. 51, 2763-2769, Nov. 2009.

7. Shahparnia, S. and O. Ramahi, " A simple and effective model for electromagnetic bandgap structures embedded in printed circuit boards," Microwave and Wireless Components Letters, Vol. 15, No. 10, 621-623, Oct. 2005.
doi:10.1109/LMWC.2005.856695

8. Rogers, S., "Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 8, 2495-2505, Aug. 2005.
doi:10.1109/TMTT.2005.852776

9. Mohajer-Iravani, B. and O. Ramahi, "Wideband circuit model for planar EBG structures," IEEE Trans. on Advanced Packaging, Vol. 33, No. 1, 169-179, Feb. 2010.
doi:10.1109/TADVP.2009.2021156

10. Sievenpiper, D., L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

11. Gil, I., J. Bonache, J. Garcia-Garcia, and F. Martin, "Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators," IEEE Trans. on Microwave Theory and Tech., Vol. 54, No. 6, 2665-2674, Jun. 2006.
doi:10.1109/TMTT.2006.872949

12. Matekovits, L., D. Thalakotuna, M. Heimlich, and K. Esselle, "Investigation on FET switch integration techniques for a tunable microwave periodic structure," Proc. International Workshop on Antenna Technology (iWAT), 44-47, Mar. 2012.

13. Matekovits, L., D. Thalakotuna, M. Heimlich, and K. P. Esselle, "Wideband matching of a tunable periodic structure in GaAs technology," Proc. International Workshop on Antenna Technology (iWAT), 376-379, Mar. 2011.

14. Thalakotuna, D., L. Matekovits, K. Esselle, and M. Heimlich, "Dynamic tuning of electromagnetic bandgap," Proc. of the 5th European Conference on Antennas and Propagation, 1065-1067, Apr. 2011.

15. Thalakotuna, D., L. Matekovits, K. Esselle, and M. Heimlich, "Effect of active device insertion losses on the electromagnetic bandgap characteristics of a tunable 1D periodic structure in the S band," Proc. 2011 IEEE International Symposium on Antennas and Propagation, 1808-1811, Jul. 2011.

16. Bahl, I. J., Lumped Elements for RF and Microwave Circuits, Artech House, 2003.

17. Collin, R. E., Foundation of Microwave Engineering, 1st Ed., McGrawHill, New York, 1966.

18. Pozar, D. M., Microwave Engineering, John Wiley and Sons, 1998.

19. Thalakotuna, D., L. Matekovits, M. Heimlich, K. P. Esselle, and S. G. Hay, "Active switching devices in a tunable ebg structure: Placement strategies and modelling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1740-1751, 2011.
doi:10.1163/156939311797164873

20. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley and Sons, 2001.
doi:10.1002/0471221619

21. Rosa, E., "The self and mutual inductances of linear conductors," Bulletin of the Bureau of Standards, Vol. 4, No. 2, 301, 1908.
doi:10.6028/bulletin.088