Vol. 154
Latest Volume
All Volumes
2015-12-18
Effective Magnetoelectric Properties of Magnetoelectroelastic (Multiferroic) Materials and Effects on Plane Wave Dynamics
By
Progress In Electromagnetics Research, Vol. 154, 115-126, 2015
Abstract
In this paper we analyze the 3D modes of a linear homogeneous magnetoelectroelastic (MEE) material reduced to magnetoelectric (ME) constitutive form. This allows convenient examination of the predominately electromagnetic behavior in a mechanically coupled MEE material system. We find that the behavior of the electromagnetic modes are strongly in fluenced by the mechanical coupling present in the MEE material system. A number of papers refer to the cross-coupling of laminated piezoelectric and piezomagnetic materials as magnetoelectric materials. We discuss here that the composite materials are MEE systems and that the constitutive relations need to reflect the mechanical coupling also. Further, we find that the mechanical coupling has a significant impact on the electromagnetic propagation modes of the composite material. Through examples of homogenized MEE materials we show possibilities for remarkable electromagnetic material characteristics which are not conventionally obtainable in single phase materials.
Citation
Scott M. Keller, Abdon E. Sepulveda, and Gregory P. Carman, "Effective Magnetoelectric Properties of Magnetoelectroelastic (Multiferroic) Materials and Effects on Plane Wave Dynamics," Progress In Electromagnetics Research, Vol. 154, 115-126, 2015.
doi:10.2528/PIER15082008
References

1. Landau, L. and E. Lifshitz, Electrodynamics of Continuous Medium, Gostechizdat, Moscow, 1957.

2. Astrov, D. N., "The magnetoelectric effect in antiferromagnetics," Soviet Physics JETP-USSR, Vol. 11, No. 3, 708-709, 1960.

3. Fiebig, M., "Revival of the magnetoelectric effect," Journal of Physics D: Applied Physics, Vol. 38, R123-R152, Apr. 2005.
doi:10.1088/0022-3727/38/8/R01

4. Ryu, J., S. Priya, K. Uchino, and H.-E. Kim, "Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials," Journal of Electroceramics, Vol. 8, No. 2, 107-119, 2002.
doi:10.1023/A:1020599728432

5. Fetisov, Y. K. and G. Srinivasan, "Ferritepiezoelectric microwave phase shifter: Studies on electric field tunability," Electronics Letters, Vol. 41, No. 19, 1066, 2005.
doi:10.1049/el:20051653

6. Srinivasan, G., "Ferrite-piezoelectric layered structures: Microwave magnetoelectric effects and electric field tunable devices," Ferroelectrics, Vol. 342, 65-71, Oct. 2006.

7. Zhai, J., Z. Xing, S. Dong, J. Li, and D. Viehland, "Magnetoelectric laminate composites: An overview," Journal of the American Ceramic Society, Vol. 91, 351-358, Feb. 2008.
doi:10.1111/j.1551-2916.2008.02259.x

8. Chen, J. Y., H. L. Chen, and E. Pan, "Reflection and transmission coefficients of plane waves in magnetoelectroelastic layered structures," Journal of Vibration and Acoustics, Vol. 130, 031002, Jun. 2008.
doi:10.1115/1.2827388

9. Iadonisi, G., C. Perroni, G. Cantele, and D. Ninno, "Propagation of acoustic and electromagnetic waves in piezoelectric, piezomagnetic, and magnetoelectric materials with tetragonal and hexagonal symmetry," Physical Review B, Vol. 80, 094103, Sep. 2009.
doi:10.1103/PhysRevB.80.094103

10. Yang, G.-M., X. Xing, A. Daigle, M. Liu, O. Obi, S. Stoute, K. Naishadham, and N. X. Sun, "Tunable miniaturized patch antennas with self-biased multilayer magnetic films," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2190-2193, 2009.
doi:10.1109/TAP.2009.2021972

11. Keller, S. M. and G. P. Carman, "Electromagnetic wave propagation in (bianisotropic) magnetoelectric materials," Journal of Intelligent Material Systems and Structures, Vol. 24, 651-668, Mar. 2013.
doi:10.1177/1045389X12467518

12. Pang, Y., J. Liu, Y. Wang, and D. Fang, "Wave propagation in piezoelectric/piezomagnetic layered periodic composites," Acta Mechanica Solida Sinica, Vol. 21, 483-490, 2008.
doi:10.1007/s10338-008-0858-6

13. Chen, J., E. Pan, and H. Chen, "Wave propagation in magneto-electro-elastic multilayered plates," International Journal of Solids and Structures, Vol. 44, 1073-1085, 2007.
doi:10.1016/j.ijsolstr.2006.06.003

14. Wu, B., J. Yu, and C. He, "Wave propagation in non-homogeneous magneto-electro-elastic plates," Journal of Sound and Vibration, Vol. 317, 250-264, 2008.

15. Bichurin, M. I., V. M. Petrov, and G. Srinivasan, "Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites," Journal of Applied Physics, Vol. 92, No. 12, 7681-7683, Dec. 2002.
doi:10.1063/1.1522834

16. Chang, C. M., "Analytically evaluating the properties and performance of layered magnetoelectric composites," Journal of Intelligent Material Systems and Structures, Vol. 19, No. 11, 1271-1280, Apr. 2008.
doi:10.1177/1045389X07085410

17. Li, S., H. Du, Q. Xue, X. Gao, Y. Zhang, W. Shao, T. Nan, Z. Zhou, and N. X. Sun, "Large E-field tunability of microwave ferromagnetic properties in Fe59.3Co28.0Hf12.7/PZN-PT multiferroic composites," Journal of Applied Physics, Vol. 115, No. 17, 723, May 2014.
doi:10.1063/1.4874941

18. Pan, D. A., Y. Bai, A. A. Volinsky, W. Y. Chu, and L. J. Qiao, "Giant magnetoelectric effect in Ni-lead zirconium titanate cylindrical structure," Applied Physics Letters, Vol. 92, No. 5, 052904-3, 2008.

19. Ustinov, A. B., B. A. Kalinikos, and G. Srinivasan, "Nonlinear multiferroic phase shifters for microwave frequencies," Appl. Phys. Lett., Vol. 104, No. 5, 052911, Feb. 2014.
doi:10.1063/1.4864315

20. Wan, J. G., J. M. Liu, H. L. W. Chand, C. L. Choy, G. H. Wang, and C. W. Nan, "Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites," Journal of Applied Physics, Vol. 93, No. 12, 9916-5, 2003.
doi:10.1063/1.1577404

21. Wang, X., E. Pan, J. D. Albrecht, and W. J. Feng, "Effective properties of multilayered functionally graded multiferroic composites," Composite Structures, Vol. 87, No. 3, 206-214, Feb. 2009.
doi:10.1016/j.compstruct.2008.01.006