Vol. 153
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-10-15
Broadband Calculations of Band Diagrams in Periodic Structures Using the Broadband Green's Function with Low Wavenumber Extraction (BBGFL)
By
Progress In Electromagnetics Research, Vol. 153, 57-68, 2015
Abstract
We apply the method of the Broadband Green's Functions with Low wavenumber extraction (BBGFL) to calculate band diagrams in periodic structures. We consider 2D impenetrable objects placed in a 2D periodic lattice. The low wavenumber extraction is applied to the 2D periodic Green's function for the lattice which is used to formulate the surface integral equation. The low wavenumber extraction accelerates the convergence of the Floquet modes expansion. Using the BBGFL to the surface integral equation and the Method of Moments gives a linear eigenvalue equation that gives the broadband (multi-band) solutions for a given point in the first Brillouin zone. The method only requires the calculation of the periodic Green's function at a single low wavenumber. Numerical results are illustrated to show the computational efficiency and accuracy of the method. Because of the acceleration of convergence, an eigenvalue problem with dimensions 49 plane wave Floquet modes are sufficient to give the multi-band solutions that are in excellent agreement with results of the Korringa Kohn Rostoker (KKR) method. The multiband solutions for the band problem and the complementary band problem are also discussed.
Citation
Leung Tsang , "Broadband Calculations of Band Diagrams in Periodic Structures Using the Broadband Green's Function with Low Wavenumber Extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901
http://www.jpier.org/PIER/pier.php?paper=15082901
References

1. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters, Vol. 65, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152

2. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Physical Review Letters, Vol. 65, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646

3. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, No. 16, 8565-8571, 1991.
doi:10.1103/PhysRevB.44.8565

4. Mead, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic bandgap in two dimensions," Applied Physics Letters, Vol. 61, 495-497, 1992.
doi:10.1063/1.107868

5. Kafesaki, M. and C. M. Soukoulis, "Historical perspective and review of fundamental principles in modelling three-dimensional periodic structures with emphasis on volumetric EBGs," Metamaterials, N. Engheta and R. W. Ziolkowski (eds)., Chapter 8, John Wiley and Sons, 2006.

6. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.

7. Korringa, J., "On the calculation of the energy of a Bloch wave in a metal," Physica, Vol. 13, No. 6, 392-400, 1947.
doi:10.1016/0031-8914(47)90013-X

8. Kohn, W. and N. Rostoker, "Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium," Phys Rev., Vol. 94, 1111-1120, 1954.
doi:10.1103/PhysRev.94.1111

9. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, Vol. 48, No. 11, 7767-7771, 1993.
doi:10.1103/PhysRevB.48.7767

10. Liu, Z., C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, "Elastic wave scattering by periodic structures of spherical objects: Theory and experiment," Physical Review B, Vol. 62, 2446-2457, 2000.
doi:10.1103/PhysRevB.62.2446

11. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

12. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Physical Review B, Vol. 54, 11245-11251, 1996.
doi:10.1103/PhysRevB.54.11245

13. Ziolkowski, R. W. and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Optical and Quantum Electronics, Vol. 31, 843-855, 1999.
doi:10.1023/A:1006964830895

14. Hiett, B. P., J. M. Generowicz, S. J. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, "Application of finite element methods to photonic crystal modelling," IEE Proc-SciMeasurment Technology, Vol. 149, 293-296, 2002.
doi:10.1049/ip-smt:20020642

15. Jin, J.-M. and D. J. Riley, Finite Element Analysis of Antennas and Arrays, Hoboken, Wiley, 2009.

16. Jin, J.-M., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2014.

17. Luo, M., Q. H. Liu, and Z. Li, "Spectral element method for band structures of two-dimensional anisotropic photonic crystals," Physical Review E, Vol. 79, 026705, 2009.
doi:10.1103/PhysRevE.79.026705

18. Bozzi, M., S. Germani, L. Minelli, L. Perregrini, and P. de Maagt, "Efficient calculation of the dispersion diagram of planar electromagnetic band-gap structures by the MoM/BI-RME method," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 1, 29-35, Jan. 2005.
doi:10.1109/TAP.2004.840522

19. Marini, S., A. Coves, V. E.Boria, and B. Gimeno, "Efficient modal analysis of periodic structures loaded with arbitrarily shaped waveguides," IEEE Trans. on Microwave Theory and Tech., Vol. 58, No. 3, 529-536, 2010.
doi:10.1109/TMTT.2010.2040407

20. Tsang, L. and S. Huang, "Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique,", Provisional U.S. Patent No. 62/152.702, Apr. 24, 2015.

21. Huang, S., "Broadband Green's function and applications to fast electromagnetic analysis of high-speed interconnects,", Ph.D. Dissertation, Dept. Elect. Eng., Univ. Washington, Seattle, WA, Jun. 2015.

22. Huang, S. and L. Tsang, "Broadband Green's function and applications to fast electromagnetic modeling of high speed interconnects," IEEE International Symposium on Antennas and Propagation, Vancouver, BC, Canada, Jul. 2015.

23. Tsang, L. and S. Huang, "Broadband Green's function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress of Electromagnetic Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605

24. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2: Numerical Simulations, 705 pages, Wiley Interscience, 2001.