1. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters, Vol. 65, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152 Google Scholar
2. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Physical Review Letters, Vol. 65, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646 Google Scholar
3. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, No. 16, 8565-8571, 1991.
doi:10.1103/PhysRevB.44.8565 Google Scholar
4. Mead, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic bandgap in two dimensions," Applied Physics Letters, Vol. 61, 495-497, 1992.
doi:10.1063/1.107868 Google Scholar
5. Kafesaki, M. and C. M. Soukoulis, "Historical perspective and review of fundamental principles in modelling three-dimensional periodic structures with emphasis on volumetric EBGs," Metamaterials, N. Engheta and R. W. Ziolkowski (eds)., Chapter 8, John Wiley and Sons, 2006. Google Scholar
6. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
7. Korringa, J., "On the calculation of the energy of a Bloch wave in a metal," Physica, Vol. 13, No. 6, 392-400, 1947.
doi:10.1016/0031-8914(47)90013-X Google Scholar
8. Kohn, W. and N. Rostoker, "Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium," Phys Rev., Vol. 94, 1111-1120, 1954.
doi:10.1103/PhysRev.94.1111 Google Scholar
9. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, Vol. 48, No. 11, 7767-7771, 1993.
doi:10.1103/PhysRevB.48.7767 Google Scholar
10. Liu, Z., C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, "Elastic wave scattering by periodic structures of spherical objects: Theory and experiment," Physical Review B, Vol. 62, 2446-2457, 2000.
doi:10.1103/PhysRevB.62.2446 Google Scholar
11. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.
12. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Physical Review B, Vol. 54, 11245-11251, 1996.
doi:10.1103/PhysRevB.54.11245 Google Scholar
13. Ziolkowski, R. W. and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Optical and Quantum Electronics, Vol. 31, 843-855, 1999.
doi:10.1023/A:1006964830895 Google Scholar
14. Hiett, B. P., J. M. Generowicz, S. J. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, "Application of finite element methods to photonic crystal modelling," IEE Proc-SciMeasurment Technology, Vol. 149, 293-296, 2002.
doi:10.1049/ip-smt:20020642 Google Scholar
15. Jin, J.-M. and D. J. Riley, Finite Element Analysis of Antennas and Arrays, Hoboken, Wiley, 2009.
16. Jin, J.-M., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2014.
17. Luo, M., Q. H. Liu, and Z. Li, "Spectral element method for band structures of two-dimensional anisotropic photonic crystals," Physical Review E, Vol. 79, 026705, 2009.
doi:10.1103/PhysRevE.79.026705 Google Scholar
18. Bozzi, M., S. Germani, L. Minelli, L. Perregrini, and P. de Maagt, "Efficient calculation of the dispersion diagram of planar electromagnetic band-gap structures by the MoM/BI-RME method," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 1, 29-35, Jan. 2005.
doi:10.1109/TAP.2004.840522 Google Scholar
19. Marini, S., A. Coves, V. E.Boria, and B. Gimeno, "Efficient modal analysis of periodic structures loaded with arbitrarily shaped waveguides," IEEE Trans. on Microwave Theory and Tech., Vol. 58, No. 3, 529-536, 2010.
doi:10.1109/TMTT.2010.2040407 Google Scholar
20. Tsang, L. and S. Huang, "Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique,", Provisional U.S. Patent No. 62/152.702, Apr. 24, 2015. Google Scholar
21. Huang, S., "Broadband Green's function and applications to fast electromagnetic analysis of high-speed interconnects,", Ph.D. Dissertation, Dept. Elect. Eng., Univ. Washington, Seattle, WA, Jun. 2015. Google Scholar
22. Huang, S. and L. Tsang, "Broadband Green's function and applications to fast electromagnetic modeling of high speed interconnects," IEEE International Symposium on Antennas and Propagation, Vancouver, BC, Canada, Jul. 2015. Google Scholar
23. Tsang, L. and S. Huang, "Broadband Green's function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress of Electromagnetic Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605 Google Scholar
24. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2: Numerical Simulations, 705 pages, Wiley Interscience, 2001.