1. Yan, S. and J.-M. Jin, "Theoretical formulation of a time-domain finite element method for nonlinear magnetic problems in three dimensions (Invited Paper)," in the Commemorative Collection on the 150-Year Anniversary of Maxwell's Equations, Progress In Electromagnetics Research, Vol. 153, 33-55, 2015. Google Scholar
2. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley, 2014.
3. Jiles, D. C. and D. L. Atherton, "Theory of the magnetisation process in ferromagnetics and its application to the magnetomechanical effect," J. Phys. D: Appl. Phys., Vol. 17, No. 6, 1265-1281, Jun. 1984.
doi:10.1088/0022-3727/17/6/023 Google Scholar
4. Jiles, D. C. and D. L. Atherton, "Theory of ferromagnetic hysteresis," Journal of Magnetism and Magnetic Materials, Vol. 61, 48-60, Sep. 1986.
doi:10.1016/0304-8853(86)90066-1 Google Scholar
5. Bergqvist, A. J., "A simple vector generalization of the Jiles-Atherton model of hysteresis," IEEE Trans. Magn., Vol. 32, No. 5, 4213-4215, Sep. 1996.
doi:10.1109/20.539337 Google Scholar
6. Leite, J. V., N. Sadowski, P. Kuo-Peng, N. J. Batistela, J. P. A. Bastos, and A. A. de Espindola, "Inverse Jiles-Atherton vector hysteresis model," IEEE Trans. Magn., Vol. 40, No. 4, 1769-1775, Jul. 2004.
doi:10.1109/TMAG.2004.830998 Google Scholar
7. Broyden, C. G., "A class of methods for solving nonlinear simultaneous equations," Math. Comp., Vol. 19, 577-593, 1965.
doi:10.1090/S0025-5718-1965-0198670-6 Google Scholar
8. Zienkiewicz, O. C., "A new look at the Newmark, Houboult and other time stepping formulas: A weighted residual approach," Earthquake Engineering and Structural Dynamics, Vol. 5, 413-418, 1977.
doi:10.1002/eqe.4290050407 Google Scholar
9. Ren, Z., "Influence of the R.H.S. on the convergence behaviour of the curl-curl equation," IEEE Trans. Magn., Vol. 32, No. 3, 655-658, May 1996.
doi:10.1109/20.497323 Google Scholar
10. Whitney, H., Geometric Integration Theory, Princeton University Press, 1957.
11. Nédélec, J. C., "Mixed finite elements in R3," Numer. Meth., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415 Google Scholar
12. Webb, J. P., "Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements," IEEE Trans. Antennas Propag., Vol. 47, No. 8, 1244-1253, Aug. 1999.
doi:10.1109/8.791939 Google Scholar
13. Newmark, N. M., "A method of computation for structural dynamics," J. Engineering Mechanics Division. ASCE, Vol. 85, 67-94, Jul. 1959. Google Scholar
14. Gedney, S. D. and U. Navsariwala, "An unconditionally stable finite element time-domain solution of the vector wave equation," IEEE Microw. Guided Wave Lett., Vol. 5, No. 10, 332-334, Oct. 1995.
doi:10.1109/75.465046 Google Scholar
15. Peterson, A. F., "Absorbing boundary conditions for the vector wave equation," Microw. Opt. Tech. Lett., Vol. 1, No. 2, 62-64, 1988.
doi:10.1002/mop.4650010206 Google Scholar
16. Webb, J. P. and V. N. Kanellopoulos, "Absorbing boundary conditions for the finite element solution of the vector wave equation," Microw. Opt. Tech. Lett., Vol. 2, No. 10, 370-372, 1989.
doi:10.1002/mop.4650021010 Google Scholar
17. Testing electromagnetic analysis methods (T.E.A.M.), http://www.compumag.org/jsite/team.html, International Compumag Society.
18. Albanese, R. and G. Rubinacci, "Solution of three dimensional eddy current problems by integral and differential methods," IEEE Trans. Magn., Vol. 24, 98-101, Jan. 1998. Google Scholar
19. Lee, S. H., "Efficient finite element electromagnetic analysis for high-frequency/high-speed circuits and multiconductor transmission line,", Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2009. Google Scholar
20. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279 Google Scholar
21. Nakata, T., T. Takahashi, K. Fujiwara, and P. Olszewski, "Analysis of magnetic fields of 3-D nonlinear magnetostatic model (problem 13)," Proc. of the European TEAM Workshop and Int. Sem. on Elecmagn. Field Anal., Oxford, England, Apr. 1990. Google Scholar
22. Nakata, T., N. Takahashi, and K. Fujiwara, "Summary of results for benchmark problem 10 (steel plates around a coil)," Compel., Vol. 14, No. 2/3, 103-112, Sep. 1995.
doi:10.1108/eb010141 Google Scholar
23. Bottauscio, O., M. Chiampi, C. Ragusa, L. Rege, and M. Repetto, "A test-case for validation of magnetic field analysis with vector hysteresis," IEEE Trans. Magn., Vol. 38, No. 2, 893-896, Mar. 2002.
doi:10.1109/20.996230 Google Scholar
24. Yamada, S., K. Bessho, and J. Lu, "Harmonic balance finite element method applied to nonlinear AC magnetic analysis," IEEE Trans. Magn., Vol. 24, No. 4, 2971-2973, Jul. 1989. Google Scholar