Vol. 156
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-06-20
The Modern High Frequency Methods for Solving Electromagnetic Scattering Problems (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 156, 63-82, 2016
Abstract
The high frequency scattering problems of electromagnetic fields scattered from electrically large scatterers are important and challenging. On the calculation of the reflected and diffracted wave fields, the high frequency methods could be classified into the current based method and the ray based method. In this paper, first, we give a review on the progress of the modern high frequency methods for solving the electromagnetic scattering problems. Next, due to the highly oscillatory property of the high frequency electromagnetic scattered fields, we propose the numerical steepest descent path method. Finally, we comprehensively address the high frequency wave physics, including the high frequency critical point contributions, the Keller's cone, the shadow and reflection boundaries and the creeping wave fields.
Citation
Yu Mao Wu, and Weng Cho Chew, "The Modern High Frequency Methods for Solving Electromagnetic Scattering Problems (Invited Paper)," Progress In Electromagnetics Research, Vol. 156, 63-82, 2016.
doi:10.2528/PIER15110208
References

1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, 459-512, 1865.
doi:10.1098/rstl.1865.0008

2. Heaviside, O., Electromagnetic Theory, Vol. 2, Cosimo, Inc., 2008.

3. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

4. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1990.

5. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.
doi:10.1007/978-1-4684-9904-9

6. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, John Wiley-Sons, 2012.

7. Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
doi:10.1017/CBO9781139164313

8. Cai, W., Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport, Cambridge University Press, 2013.

9. Garrison, J. and R. Chiao, Quantum Optics, Oxford University Press, 2014.

10. Tang, L., J. A. Kong, and B. Shin, Theory of Microwave Remote Sensing, John Wiley, 1985.

11. Jin, Y. Q., Electromagnetic Scattering Modelling for Quantitative Remote Sensing, World Science Press, 2000.

12. Harrington, R. F., Field Computation by Moment Method, Macmillan, 1968.

13. Jin, J. M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley-IEEE Press, 2014.

14. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2015.

15. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

16. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

17. Macdonald, H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913.
doi:10.1098/rsta.1913.0010

18. Ufimtsev, P. Y., Backscatter, John Wiley and Sons, 2005.

19. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, Inc., 2007.
doi:10.1002/0470109017

20. Mitzner, K. M., Incremental Length Diffraction Coefficients, Tech. Rep. No. AFAL-TR-73-296, 1974.

21. Shore, R. A. and A. D. Yaghjian, "Incremental diffraction coefficients for planar surfaces," IEEE Trans. Antennas Propag., Vol. 36, 55-70, 1988.
doi:10.1109/8.1075

22. Hansen, T. B. and R. A. Shore, "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, 1998.
doi:10.1109/8.725277

23. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 12, 1681-1695, 1996.
doi:10.1029/96RS02276

24. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116

25. James, G. L., Geometrical Theory of Diffraction for Electromagnetic Waves, Peregrinus, 1980.

26. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

27. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas Propag., Vol. 24, No. 1, 25-34, 1976.
doi:10.1109/TAP.1976.1141283

28. Kouyoumjian, R. G., "Asymptotic high-frequency methods," Proc. IEEE, Vol. 53, No. 8, 864-876, 1965.
doi:10.1109/PROC.1965.4065

29. Pathak, P. H., "High-frequency techniques for antenna analysis," Proc. IEEE, Vol. 80, No. 1, 44-65, 1992.
doi:10.1109/5.119566

30. Borovikov, V. A., Uniform Stationary Phase Method, Institution of Electrical Engineers, 1994.

31. Conde, O. M., J. Perez, and M. F. Catedra, "Stationary phase method application for the analysis of radiation of complex 3-D conducting structures," IEEE Trans. Antennas Propag., Vol. 49, No. 5, 724-731, 2001.
doi:10.1109/8.929626

32. Carluccio, G., M. Albani, and P. H. Pathak, "Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1155-1163, 2010.
doi:10.1109/TAP.2010.2041171

33. Sommerfeld, A., "Mathematische theorie der diffraction," Mathematische Annalen., Vol. 47, No. 319, 317-374, 1896.
doi:10.1007/BF01447273

34. Fock, V. A., "The distributions of currents induced by a plane wave on the surface of a conductor," J. Phys., Vol. 10, 130-136, 1946.

35. Kline, M., Mathematical Theory of Optics, Brown University Notes, Providence, 1944.

36. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

37. Lee, S. W. and R. Mittra, "Fourier transform of a polygonal shape function and its application in electromagnetics," IEEE Trans. Antennas Propag., Vol. 31, No. 1, 99-103, 1983.
doi:10.1109/TAP.1983.1142981

38. Gordon, W. B., "High-frequency approximations to the physical optics scattering integral," IEEE Trans. Antennas Propag., Vol. 42, No. 3, 427-432, 1994.
doi:10.1109/8.280733

39. Engquist, B., E. Fatemi, and S. Osher, "Numerical solution of the high frequency asymptotic expansion for the scalar wave equation," J. Comput. Phys., Vol. 120, No. 1, 145-155, Aug. 1995.
doi:10.1006/jcph.1995.1154

40. Engquist, B. and O. Runborg, "Computational high frequency wave propagation," Acta Numerica, Vol. 12, 181-266, 2003.
doi:10.1017/S0962492902000119

41. Wong, R., Asymptotic Approximations of Integrals, SIAM, 2001.
doi:10.1137/1.9780898719260

42. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972.

43. Josef, S. and B. Roland, Introduction to Numerical Analysis, Springer-Verlag, 1980.

44. Asheim, A. and D. Huybrechs, "Asymptotic analysis of numerical steepest descent with path approximations," Found. Comput. Math., Vol. 10, No. 6, 647-671, 2010.
doi:10.1007/s10208-010-9068-y

45. Bondia, F. V., M. Ferrando-Bataller, and A. Valero-Nogueira, "A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 773-789, 2010.
doi:10.1109/TAP.2009.2039308

46. Zhang, J., B. Xu, and T. J. Cui, "An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 986-991, 2014.
doi:10.1109/TAP.2013.2292937

47. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308

48. Wu, Y. M., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Symp. on Antennas and Propag. (IEEE APS12), 2012.

49. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, 2013.
doi:10.1109/TAP.2013.2259788

50. Wu, Y. M., L. J. Jiang, and W. C. Chew, "Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method," J. Comput. Phys., Vol. 236, 408-425, 2013.
doi:10.1016/j.jcp.2012.10.052

51. Wu, Y. M., L. Jiang, and W. C. Chew, "The contour deformation method for calculating the high frequency scattered fields by the Fock current on the surface of the 3-D convex cylinder," Symp. on Antennas and Propag. (IEEE APS14), Jul. 2014.

52. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high frequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, 2015.
doi:10.1109/TAP.2015.2407411

53. Perrey-Debain, E., J. Trevelyan, and P. Bettess, "Wave boundary elements: A theoretical overview presenting applications in scattering of short waves," Eng. Anal. Bound. Elem., Vol. 28, 131-141, 2004.
doi:10.1016/S0955-7997(03)00127-9

54. Engquist, B., A. Fokas, E. Hairer, and A. Iserles, Highly Oscillatory Problems, London Mathematical Society Lecture Note Series, Cambridge University Press, 2009.
doi:10.1017/CBO9781139107136

55. Chandler, S. N. and S. Langdon, Acoustic Scattering: High Frequency Boundary Element Methods and Unified Transform Methods, SIAM, 2015.

56. Cheng, H., W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, "A wideband fast multipole method for the Helmholtz equation in three dimensions," J. Comput. Phys., Vol. 216, No. 1, 300-325, 2006.
doi:10.1016/j.jcp.2005.12.001

57. Bruno, O. P., Fast, High-order, High-frequency Integral Methods for Computational Acoustics and Electromagnetics, Springer, Berlin Heidelberg, 2003.

58. Umul, Y. Z., "Rigorous expressions for the equivalent edge currents," Progress In Electromagnetics Research B, Vol. 15, 77-94, 2009.
doi:10.2528/PIERB09040104

59. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propag., Vol. 32, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

60. Chou, H. T., P. H. Pathak, and P. R. Rousseau, "TD-UTD solutions for the transient radiation and surface fields of pulsed antennas placed on PEC smooth convex surfaces," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1626-1637, 2011.
doi:10.1109/TAP.2011.2122235

61. Johansen, P. M., "Time-domain version of the physical theory of diffraction," IEEE Trans. Antennas Propag., Vol. 47, 261-270, 1999.
doi:10.1109/8.761065