1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, 459-512, 1865.
doi:10.1098/rstl.1865.0008
2. Heaviside, O., Electromagnetic Theory, Vol. 2, Cosimo, Inc., 2008.
3. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
4. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1990.
5. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.
doi:10.1007/978-1-4684-9904-9
6. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, John Wiley-Sons, 2012.
7. Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
doi:10.1017/CBO9781139164313
8. Cai, W., Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport, Cambridge University Press, 2013.
9. Garrison, J. and R. Chiao, Quantum Optics, Oxford University Press, 2014.
10. Tang, L., J. A. Kong, and B. Shin, Theory of Microwave Remote Sensing, John Wiley, 1985.
11. Jin, Y. Q., Electromagnetic Scattering Modelling for Quantitative Remote Sensing, World Science Press, 2000.
12. Harrington, R. F., Field Computation by Moment Method, Macmillan, 1968.
13. Jin, J. M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley-IEEE Press, 2014.
14. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2015.
15. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855
16. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
17. Macdonald, H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913.
doi:10.1098/rsta.1913.0010
18. Ufimtsev, P. Y., Backscatter, John Wiley and Sons, 2005.
19. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, Inc., 2007.
doi:10.1002/0470109017
20. Mitzner, K. M., Incremental Length Diffraction Coefficients, Tech. Rep. No. AFAL-TR-73-296, 1974.
21. Shore, R. A. and A. D. Yaghjian, "Incremental diffraction coefficients for planar surfaces," IEEE Trans. Antennas Propag., Vol. 36, 55-70, 1988.
doi:10.1109/8.1075
22. Hansen, T. B. and R. A. Shore, "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, 1998.
doi:10.1109/8.725277
23. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 12, 1681-1695, 1996.
doi:10.1029/96RS02276
24. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116
25. James, G. L., Geometrical Theory of Diffraction for Electromagnetic Waves, Peregrinus, 1980.
26. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651
27. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas Propag., Vol. 24, No. 1, 25-34, 1976.
doi:10.1109/TAP.1976.1141283
28. Kouyoumjian, R. G., "Asymptotic high-frequency methods," Proc. IEEE, Vol. 53, No. 8, 864-876, 1965.
doi:10.1109/PROC.1965.4065
29. Pathak, P. H., "High-frequency techniques for antenna analysis," Proc. IEEE, Vol. 80, No. 1, 44-65, 1992.
doi:10.1109/5.119566
30. Borovikov, V. A., Uniform Stationary Phase Method, Institution of Electrical Engineers, 1994.
31. Conde, O. M., J. Perez, and M. F. Catedra, "Stationary phase method application for the analysis of radiation of complex 3-D conducting structures," IEEE Trans. Antennas Propag., Vol. 49, No. 5, 724-731, 2001.
doi:10.1109/8.929626
32. Carluccio, G., M. Albani, and P. H. Pathak, "Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1155-1163, 2010.
doi:10.1109/TAP.2010.2041171
33. Sommerfeld, A., "Mathematische theorie der diffraction," Mathematische Annalen., Vol. 47, No. 319, 317-374, 1896.
doi:10.1007/BF01447273
34. Fock, V. A., "The distributions of currents induced by a plane wave on the surface of a conductor," J. Phys., Vol. 10, 130-136, 1946.
35. Kline, M., Mathematical Theory of Optics, Brown University Notes, Providence, 1944.
36. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706
37. Lee, S. W. and R. Mittra, "Fourier transform of a polygonal shape function and its application in electromagnetics," IEEE Trans. Antennas Propag., Vol. 31, No. 1, 99-103, 1983.
doi:10.1109/TAP.1983.1142981
38. Gordon, W. B., "High-frequency approximations to the physical optics scattering integral," IEEE Trans. Antennas Propag., Vol. 42, No. 3, 427-432, 1994.
doi:10.1109/8.280733
39. Engquist, B., E. Fatemi, and S. Osher, "Numerical solution of the high frequency asymptotic expansion for the scalar wave equation," J. Comput. Phys., Vol. 120, No. 1, 145-155, Aug. 1995.
doi:10.1006/jcph.1995.1154
40. Engquist, B. and O. Runborg, "Computational high frequency wave propagation," Acta Numerica, Vol. 12, 181-266, 2003.
doi:10.1017/S0962492902000119
41. Wong, R., Asymptotic Approximations of Integrals, SIAM, 2001.
doi:10.1137/1.9780898719260
42. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972.
43. Josef, S. and B. Roland, Introduction to Numerical Analysis, Springer-Verlag, 1980.
44. Asheim, A. and D. Huybrechs, "Asymptotic analysis of numerical steepest descent with path approximations," Found. Comput. Math., Vol. 10, No. 6, 647-671, 2010.
doi:10.1007/s10208-010-9068-y
45. Bondia, F. V., M. Ferrando-Bataller, and A. Valero-Nogueira, "A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 773-789, 2010.
doi:10.1109/TAP.2009.2039308
46. Zhang, J., B. Xu, and T. J. Cui, "An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 986-991, 2014.
doi:10.1109/TAP.2013.2292937
47. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308
48. Wu, Y. M., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Symp. on Antennas and Propag. (IEEE APS12), 2012.
49. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, 2013.
doi:10.1109/TAP.2013.2259788
50. Wu, Y. M., L. J. Jiang, and W. C. Chew, "Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method," J. Comput. Phys., Vol. 236, 408-425, 2013.
doi:10.1016/j.jcp.2012.10.052
51. Wu, Y. M., L. Jiang, and W. C. Chew, "The contour deformation method for calculating the high frequency scattered fields by the Fock current on the surface of the 3-D convex cylinder," Symp. on Antennas and Propag. (IEEE APS14), Jul. 2014.
52. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high frequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, 2015.
doi:10.1109/TAP.2015.2407411
53. Perrey-Debain, E., J. Trevelyan, and P. Bettess, "Wave boundary elements: A theoretical overview presenting applications in scattering of short waves," Eng. Anal. Bound. Elem., Vol. 28, 131-141, 2004.
doi:10.1016/S0955-7997(03)00127-9
54. Engquist, B., A. Fokas, E. Hairer, and A. Iserles, Highly Oscillatory Problems, London Mathematical Society Lecture Note Series, Cambridge University Press, 2009.
doi:10.1017/CBO9781139107136
55. Chandler, S. N. and S. Langdon, Acoustic Scattering: High Frequency Boundary Element Methods and Unified Transform Methods, SIAM, 2015.
56. Cheng, H., W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, "A wideband fast multipole method for the Helmholtz equation in three dimensions," J. Comput. Phys., Vol. 216, No. 1, 300-325, 2006.
doi:10.1016/j.jcp.2005.12.001
57. Bruno, O. P., Fast, High-order, High-frequency Integral Methods for Computational Acoustics and Electromagnetics, Springer, Berlin Heidelberg, 2003.
58. Umul, Y. Z., "Rigorous expressions for the equivalent edge currents," Progress In Electromagnetics Research B, Vol. 15, 77-94, 2009.
doi:10.2528/PIERB09040104
59. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propag., Vol. 32, 252-258, 1984.
doi:10.1109/TAP.1984.1143303
60. Chou, H. T., P. H. Pathak, and P. R. Rousseau, "TD-UTD solutions for the transient radiation and surface fields of pulsed antennas placed on PEC smooth convex surfaces," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1626-1637, 2011.
doi:10.1109/TAP.2011.2122235
61. Johansen, P. M., "Time-domain version of the physical theory of diffraction," IEEE Trans. Antennas Propag., Vol. 47, 261-270, 1999.
doi:10.1109/8.761065