Vol. 159
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-07-13
An X/Ku-Band Focusing Anisotropic Metasurface for Low Cross-Polarization Lens Antenna Application
By
Progress In Electromagnetics Research, Vol. 159, 79-91, 2017
Abstract
An X/Ku-band flat lens antenna based on dual-frequency anisotropic metasurface is proposed in this paper. The function of the anisotropic metasurface is to focus the incident plane waves around 10 GHz and 14 GHz on different spots. Then we place a Vivaldi antenna with its phase centers at 10 GHz and 14 GHz well matching the focal spot of the metasurface at each frequency to build a flat lens antenna. The lens antenna has a peak gain of 18.5 dB and cross-polarization levels of lower than -20 dB at 10 GHz with -1 dB gain bandwidth of 9.8-10.4 GHz, while it has a peak gain of 18.8 dB and cross-polarization levels of lower than -30 dB at 14 GHz with the bandwidth of 13.8-14.2 GHz. Besides single working band, the antenna can simultaneously operate at 10 GHz and 14 GHz with gains of 16.2 dB and 16.5 dB, respectively. Measured results have a good agreement with the simulated ones.
Citation
Hai-Peng Li Guang-Ming Wang Xiang-Jun Gao Jian-Gang Liang Hai-Sheng Hou , "An X/Ku-Band Focusing Anisotropic Metasurface for Low Cross-Polarization Lens Antenna Application," Progress In Electromagnetics Research, Vol. 159, 79-91, 2017.
doi:10.2528/PIER17032807
http://www.jpier.org/PIER/pier.php?paper=17032807
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Smith, D. R., et al., "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Liu, J. P., Y. Z. Cheng, Y. Nie, and R. Z. Gong, "Metamaterial extends microstrip antenna," Microwaves & RF, Vol. 52, No. 12, 69-73, 2013.

5. Yu, N. F., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713

6. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.
doi:10.1021/nl304761m

7. Xu, H. X., et al., "Multifunctional microstrip array combining a linear polarizer and focusing metasurface," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3676-3282, 2016.
doi:10.1109/TAP.2016.2565742

8. Li, X., S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, 4940-4942, 2012.
doi:10.1364/OL.37.004940

9. Aieta, F., P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
doi:10.1021/nl302516v

10. Li, H.-P., G. M. Wang, J. G. Liang, X. J. Gao, H. S. Hou, and X. Y. Jia, "Single-layer focusing gradient metasurface for ultrathin planar lens antenna application," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1452-1457, 2017.
doi:10.1109/TAP.2016.2642832

11. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.
doi:10.1126/science.1214686

12. Zhang, K., X. M. Ding, L. Zhang, and Q. Wu, "Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in the orthogonal directions," New J. Phys., Vol. 16, 103020, 2014.
doi:10.1088/1367-2630/16/10/103020

13. Sun, S. L., et al., "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Lett., Vol. 12, 6223-6229, 2012.
doi:10.1021/nl3032668

14. Pfeiffer, C., et al., "Efficient light bending with isotropic metamaterial huygens’ surfaces," Nano Lett., Vol. 14, No. 5, 2491-2497, 2014.
doi:10.1021/nl5001746

15. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.
doi:10.1103/PhysRevLett.110.203903

16. Wu, C. J., Y. Z. Cheng, W. Y. Wang, B. He, and R. Z. Gong, "Ultra-thin and polarizationindependent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling," Appl. Phys. Express, Vol. 8, No. 12, 122001, 2015.
doi:10.7567/APEX.8.122001

17. Cai, T., et al., "Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5629-5636, 2015.
doi:10.1109/TAP.2015.2496115

18. Li, H. P., G. M. Wang, J. G. Wang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetic Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

19. Song, K., Y. H. Liu, C. R. Luo, and X. P. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104

20. Yang, Y. M., W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano Lett., Vol. 14, 1394-1399, 2014.
doi:10.1021/nl4044482

21. Zhu, L., F.-Y. Meng, L. Dong, J.-H. Fu, F. Zhang, and Q. Wu, "Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect," Opt. Express, Vol. 21, No. 26, 32100-32110, 2013.
doi:10.1364/OE.21.032099

22. Chen, H. Y., J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, "Ultrawideband polarization conversion metasurfaces based on multiple plasmon resonances," J. Appl. Phys., Vol. 115, 154504, 2014.
doi:10.1063/1.4869917

23. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1718-1724, 2014.
doi:10.1364/OME.4.001717

24. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Phys. Rev. Applied, Vol. 2, No. 4, 044011, 2014.
doi:10.1103/PhysRevApplied.2.044011

25. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T. J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 149, 205-216, 2014.

26. Zhang, K., X. M. Ding, D. L. Wo, F. R. Meng, and Q. Wu, "Experimental validation of ultrathin metalenses for N-beam emissions based on transformation optics," Appl. Phys. Lett., Vol. 108, 053508, 2016.
doi:10.1063/1.4941545

27. Abdelrahman, A. H., A. Z. Elsherbeni, and F. Yang, "Transmitarray antenna design using cross-slot elements with no dielectric substrate," IEEE Antennas Wireless Propag. Lett., Vol. 13, 177-200, 2014.
doi:10.1109/LAWP.2014.2298851

28. Rahmati, B. and H. R. Hassani, "Low-profile slot transmitarray antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 174-181, 2015.
doi:10.1109/TAP.2014.2368576