1. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles, Academic Press, 2000.
2. Baran, A. J., "A review of the light scattering properties of cirrus," J. Quant. Spectrosc. Radiat. Transf., Vol. 110, No. 14–16, 1239-1260, Sep. 2009.
doi:10.1016/j.jqsrt.2009.02.026 Google Scholar
3. Baran, A. J., "From the single-scattering properties of ice crystals to climate prediction: A way forward," Atmos. Res., Vol. 112, 45-69, Aug. 2012.
doi:10.1016/j.atmosres.2012.04.010 Google Scholar
4. Baran, A. J., P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt., Vol. 40, No. 24, 4376, Aug. 2001.
doi:10.1364/AO.40.004376 Google Scholar
5. Liou, K. N. and P. Yang, Light Scattering by Ice Crystals: Fundamentals and Applications, Cambridge University Press, 2016.
doi:10.1017/CBO9781139030052
6. Lu, J. Q., P. Yang, and X.-H. Hu, "Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method," J. Biomed. Opt., Vol. 10, No. 2, 024022, 2005.
doi:10.1117/1.1897397 Google Scholar
7. Kolesnikova, I. V., S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transf., Vol. 102, No. 1, 37-45, Nov. 2006.
doi:10.1016/j.jqsrt.2006.02.050 Google Scholar
8. Bi, L. and P. Yang, "Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method," J. Biomed. Opt., Vol. 18, No. 5, 055001, May 2013.
doi:10.1117/1.JBO.18.5.055001 Google Scholar
9. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.
11. Yang, P. and K. N. Liou, "Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space," J. Opt. Soc. Am. A, Vol. 13, No. 10, 2072-2085, Oct. 1996.
doi:10.1364/JOSAA.13.002072 Google Scholar
12. Yang, P., K. N. Liou, M. I. Mishchenko, and B.-C. Gao, "Efficient finite-difference time-domain scheme for light scattering by dielectric particles: Application to aerosols," Appl. Opt., Vol. 39, No. 21, 3727-3737, Jul. 2000.
doi:10.1364/AO.39.003727 Google Scholar
13. Sun, W., N. G. Loeb, S. Tanev, and G. Videen, "Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium," Appl. Opt., Vol. 44, No. 27, 1977-1983, Sep. 2005.
doi:10.1364/AO.44.001977 Google Scholar
14. Ishimoto, H., "Radar backscattering computations for fractal-shaped snowflakes," J. Meteorol. Soc. Japan Ser. II, Vol. 86, No. 3, 459-469, 2008.
doi:10.2151/jmsj.86.459 Google Scholar
15. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw. Opt. Technol. Lett., Vol. 15, No. 3, 158-165, Jun. 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3 Google Scholar
16. Liu, Q. H., "The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 45, No. 4, 1044-1055, Jul. 1998. Google Scholar
17. Purcell, E. M. and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, Dec. 1973.
doi:10.1086/152538 Google Scholar
18. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1491-1499, Apr. 1994.
doi:10.1364/JOSAA.11.001491 Google Scholar
19. Yurkin, M. A. and A. G. Hoekstra, "The discrete dipole approximation: An overview and recent developments," J. Quant. Spectrosc. Radiat. Transf., Vol. 106, No. 1–3, 558-589, Jul. 2007. Google Scholar
20. Yurkin, M. A., V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transf., Vol. 106, No. 1–3, 546-557, Jul. 2007. Google Scholar
21. Liu, C., R. Lee Panetta, and P. Yang, "Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200," J. Quant. Spectrosc. Radiat. Transf., Vol. 113, No. 13, 1728-1740, Sep. 2012.
doi:10.1016/j.jqsrt.2012.04.021 Google Scholar
22. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, No. 8, 805-812, 1965.
doi:10.1109/PROC.1965.4058 Google Scholar
23. Waterman, P. C., "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D, Vol. 3, No. 4, 825-839, Feb. 1971.
doi:10.1103/PhysRevD.3.825 Google Scholar
24. Mishchenko, M. I., "Light scattering by randomly oriented axially symmetric particles," J. Opt. Soc. Am. A, Vol. 8, No. 6, 871-882, Jun. 1991.
doi:10.1364/JOSAA.8.000871 Google Scholar
25. Barber, P., "Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies," Appl. Opt., Vol. 14, No. 12, 2864-2872, Dec. 1975.
doi:10.1364/AO.14.002864 Google Scholar
26. Mishchenko, M. I. and L. D. Travis, "Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation," Appl. Opt., Vol. 33, No. 30, 7206-7225, Oct. 1994.
doi:10.1364/AO.33.007206 Google Scholar
27. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: A review," J. Quant. Spectrosc. Radiat. Transf., Vol. 55, No. 5, 535-575, May 1996.
doi:10.1016/0022-4073(96)00002-7 Google Scholar
28. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattring of Electromagnetic Waves: Theories and Applications, Wiley, 2000.
doi:10.1002/0471224286
29. Mackowski, D. W. and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A, Vol. 13, No. 11, 2266-2278, Nov. 1996.
doi:10.1364/JOSAA.13.002266 Google Scholar
30. Mackowski, D. W. and M. I. Mishchenko, "A multiple sphere T-matrix Fortran code for use on parallel computer clusters," J. Quant. Spectrosc. Radiat. Transf., Vol. 112, No. 13, 2182-2192, Sep. 2011.
doi:10.1016/j.jqsrt.2011.02.019 Google Scholar
31. Mackowski, D. W., "A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media," J. Quant. Spectrosc. Radiat. Transf., Vol. 133, 264-270, Jan. 2014.
doi:10.1016/j.jqsrt.2013.08.012 Google Scholar
32. Johnson, B. R., "Invariant imbedding T matrix approach to electromagnetic scattering," Appl. Opt., Vol. 27, No. 23, 4861-4873, Dec. 1988.
doi:10.1364/AO.27.004861 Google Scholar
33. Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, "Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles," J. Quant. Spectrosc. Radiat. Transf., Vol. 116, 169-183, Feb. 2013.
doi:10.1016/j.jqsrt.2012.11.014 Google Scholar
34. Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, "A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders," J. Quant. Spectrosc. Radiat. Transf., Vol. 123, No. 4, 17-22, Jul. 2013. Google Scholar
35. Bi, L. and P. Yang, "Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method," J. Quant. Spectrosc. Radiat. Transf., Vol. 138, 17-35, May 2014.
doi:10.1016/j.jqsrt.2014.01.013 Google Scholar
36. Doicu, A., T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles, Springer, 2006.
doi:10.1007/978-3-540-33697-6
37. Mishchenko, M. I. and L. D. Travis, "Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transf., Vol. 60, No. 3, 309-324, Sep. 1998.
doi:10.1016/S0022-4073(98)00008-9 Google Scholar
38. Mishchenko, M. I. and A. Macke, "How big should hexagonal ice crystals be to produce halos?," Appl. Opt., Vol. 38, No. 9, 1626-1629, Mar. 1999.
doi:10.1364/AO.38.001626 Google Scholar
39. Van de Hulst, H. C., Light Scattering by Small Particles, Wiley, 1957.
40. Wendling, P., R. Wendling, and H. K. Weickmann, "Scattering of solar radiation by hexagonal ice crystals," Appl. Opt., Vol. 18, No. 15, 2663-2671, Aug. 1979.
doi:10.1364/AO.18.002663 Google Scholar
41. Cai, Q. and K. N. Liou, "Polarized light scattering by hexagonal ice crystals: Theory," Appl. Opt., Vol. 21, No. 19, 3569-3580, Oct. 1982.
doi:10.1364/AO.21.003569 Google Scholar
42. Takano, Y. and K.-N. N. Liou, "Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals," J. Atmos. Sci., Vol. 46, No. 1, 3-19, Jan. 1989.
doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2 Google Scholar
43. Macke, A., "Scattering of light by polyhedral ice crystals," Appl. Opt., Vol. 32, No. 15, 2780-2788, May 1993.
doi:10.1364/AO.32.002780 Google Scholar
44. Macke, A., J. Mueller, and E. Raschke, "Single scattering properties of atmospheric ice crystals," J. Atmos. Sci., Vol. 53, No. 19, 2813-2825, Oct. 1996.
doi:10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2 Google Scholar
45. Lock, J. A., "Ray scattering by an arbitrarily oriented spheroid, I: Diffraction and specular reflection," Appl. Opt., Vol. 35, No. 3, 500-514, Jan. 1996.
doi:10.1364/AO.35.000500 Google Scholar
46. Lock, J. A., "Ray scattering by an arbitrarily oriented spheroid, II: Transmission and crosspolarization effects," Appl. Opt., Vol. 35, No. 3, 515-531, Jan. 1996.
doi:10.1364/AO.35.000515 Google Scholar
47. Yang, P. and K. N. Liou, "Geometric-optics — integral-equation method for light scattering by nonspherical ice crystals," Appl. Opt., Vol. 35, No. 33, 6568-6584, Nov. 1996.
doi:10.1364/AO.35.006568 Google Scholar
48. Lorenz, L., "Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle," Det Kongelige Danske Videnskabernes Selskabs Skrifter, Vol. 6, No. 6, 1-62, 1890. Google Scholar
49. Mie, G., "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen," Ann. Phys., Vol. 330, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302 Google Scholar
50. Yang, P. and K. N. Liou, "Light scattering by hexagonal ice crystals: Solutions by a ray-by-ray integration algorithm," J. Opt. Soc. Am. A, Vol. 14, No. 9, 2278-2289, Sep. 1997.
doi:10.1364/JOSAA.14.002278 Google Scholar
51. Muinonen, K., "Scattering of light by crystals: A modified Kirchhoff approximation," Appl. Opt., Vol. 28, No. 15, 3044-3050, Aug. 1989.
doi:10.1364/AO.28.003044 Google Scholar
52. Jackson, J. D., Classical Electrodynamics, 2nd Ed., Wiley, Inc., 1975.
53. Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, "Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method," J. Quant. Spectrosc. Radiat. Transf., Vol. 112, No. 9, 1492-1508, Jun. 2011. Google Scholar
54. Sun, B., P. Yang, G. W. Kattawar, and X. Zhang, "Physical-geometric optics method for large size faceted particles," Opt. Express, Vol. 25, No. 20, 24044-24060, Oct. 2017. Google Scholar
55. Van Diedenhoven, B., et al., "Remote sensing of ice crystal asymmetry parameter using multidirectional polarization measurements — Part 1: Methodology and evaluation with simulated measurements," Atmos. Meas. Tech., Vol. 5, No. 10, 2361-2374, Oct. 2012. Google Scholar
56. Van Diedenhoven, B., B. Cairns, A. M. Fridlind, A. S. Ackerman, and T. J. Garrett, "Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements — Part 2: Application to the research scanning polarimeter," Atmos. Chem. Phys., Vol. 13, No. 6, 3125-3203, Mar. 2013. Google Scholar
57. Van Diedenhoven, B., A. S. Ackerman, B. Cairns, and A. M. Fridlind, "A flexible parameterization for shortwave optical properties of ice crystals," J. Atmos. Sci., Vol. 71, No. 5, 1763-1782, May 2014. Google Scholar
58. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983.
59. Mishchenko, M., L. Travis, and A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, 2002.
60. Quirantes, A., "A T-matrix method and computer code for randomly oriented, axially symmetric coated scatterers," J. Quant. Spectrosc. Radiat. Transf., Vol. 92, No. 3, 373-381, May 2005. Google Scholar
61. Havemann, S. and A. J. Baran, "Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: Application to hexagonal ice cylinders," J. Quant. Spectrosc. Radiat. Transf., Vol. 70, No. 2, 139-158, Jul. 2001. Google Scholar
62. Kahnert, M., "The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries," J. Quant. Spectrosc. Radiat. Transf., Vol. 123, 62-78, Jul. 2013. Google Scholar
63. Kahnert, M., "T-matrix computations for particles with high-order finite symmetries," J. Quant. Spectrosc. Radiat. Transf., Vol. 123, 79-91, Jul. 2013. Google Scholar
64. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, 2nd Ed., IEEE Press, 1994.
65. Hovenier, J. W., C. van der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres, Springer, 2004.
66. Mishchenko, M. I. and M. A. Yurkin, "On the concept of random orientation in far-field electromagnetic scattering by nonspherical particles," Opt. Lett., Vol. 42, No. 3, 494-497, Feb. 2017. Google Scholar
67. Hu, C. R., G. W. Kattawar, M. E. Parkin, and P. Herb, "Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer," Appl. Opt., Vol. 26, No. 19, 4159-4173, Oct. 1987. Google Scholar
68. Tsang, L., J. A. Kong, and R. T. Shin, "Theory of Microwave Remote Sensing," Wiley-Interscience, 1985. Google Scholar
69. Ren, K. F., F. Onofri, C. Roze, and T. Girasole, "Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle," Opt. Lett., Vol. 36, No. 3, 370-372, Feb. 2011. Google Scholar
70. Sun, B., G. W. Kattawar, P. Yang, and K. F. Ren, "Rigorous 3-D vectorial complex ray model applied to light scattering by an arbitrary spheroid," J. Quant. Spectrosc. Radiat. Transf., Vol. 179, 1-10, Aug. 2016. Google Scholar
71. Morse, P. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.
72. Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice, Addison-Wesley, 1997.
73. Cauchy, A., "Memoire sur la rectification des courbes et la quadrature des surfaces courbes," Mem. Acad. Sci. Paris, 22, 3ff, 1950. Google Scholar
74. Vouk, V., "Projected area of convex bodies," Nature, Vol. 162, No. 4113, 330-331, Aug. 1948. Google Scholar
75. Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, "Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds," Appl. Opt., Vol. 50, No. 8, 1065-1081, Mar. 2011. Google Scholar
76. Chang, P. C. Y., J. G. Walker, and K. I. Hopcraft, "Ray tracing in absorbing media," J. Quant. Spectrosc. Radiat. Transf., Vol. 96, No. 3–4, 327-341, Dec. 2005. Google Scholar
77. Brillouin, L., "The scattering cross section of spheres for electromagnetic waves," J. Appl. Phys., Vol. 20, No. 11, 1110-1125, Nov. 1949. Google Scholar
78. Sun, B., P. Yang, G. W. Kattawar, and M. I. Mishchenko, "On Babinet's principle and diffraction associated with an arbitrary particle," Opt. Lett., Vol. 42, No. 23, 5026-5029, Dec. 2017. Google Scholar
79. Ishimoto, H., K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, "Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds," J. Quant. Spectrosc. Radiat. Transf., Vol. 113, No. 8, 632-643, May 2012. Google Scholar
80. Yang, P., et al., "Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm," J. Atmos. Sci., Vol. 70, No. 1, 330-347, Jan. 2013. Google Scholar
81. Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, "Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra," Appl. Opt., Vol. 49, No. 3, 334-342, Jan. 2010. Google Scholar
82. Yang, P. and K. N. Liou, "Single-scattering properties of complex ice crystals in terrestrial atmosphere," Contr. Atmos. Phys., Vol. 71, No. 2, 223-248, 1998. Google Scholar
83. Volten, H., O. Munoz, J. W. Hovenier, and L. B. F. M. Waters, "An update of the Amsterdam light scattering database," J. Quant. Spectrosc. Radiat. Transf., Vol. 100, No. 1–3, 437-443, Jul. 2006. Google Scholar
84. Nakajima, T., M. Tanaka, M. Yamano, M. Shiobara, K. Arao, and Y. Nakanishi, "Aerosol optical characteristics in the yellow sand events observed in May 1982 in Nagasaki: Part 2, models," J. Meteorol. Soc. Japan Ser. II, Vol. 67, No. 2, 279-291, 1989. Google Scholar
85. Okada, K., A. Kobayashi, Y. Iwasaka, H. Naruse, T. Tanaka, and O. Nemoto, "Features of individual Asian dust-storm particles collected at Nagoya, Japan," J. Meteorol. Soc. Japan, Vol. 65, No. 3, 515-521, 1987. Google Scholar
86. Reid, E. A., "Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis," J. Geophys. Res., Vol. 108, No. D19, 8591, Oct. 2003. Google Scholar
87. Hill, S. C., A. C. Hill, and P. W. Barber, "Light scattering by size/shape distributions of soil particles and spheroids," Appl. Opt., Vol. 23, No. 7, 1025-1031, Apr. 1984. Google Scholar
88. Mishchenko, M. I., A. A. Lacis, B. E. Carlson, and L. D. Travis, "Nonsphericity of dust like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling," Geophys. Res. Lett., Vol. 22, No. 9, 1077-1080, May 1995. Google Scholar
89. Mishchenko, M. I., L. D. Travis, R. A. Kahn, and R. A. West, "Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids," J. Geophys. Res. Atmos., Vol. 102, No. D14, 16831-16847, Jul. 1997. Google Scholar
90. Dubovik, O., et al., "Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust," J. Geophys. Res. Atmos., Vol. 111, No. D11, D11208, Jun. 2006. Google Scholar
91. Deschamps, P. Y., et al., "The POLDER mission: Instrument characteristics and scientific objectives," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 3, 598-615, May 1994. Google Scholar
92. Labonnote, L. C., G. Brogniez, J. C. Buriez, M. Doutriaux-Boucher, J. F. Gayet, and A. Macke, "Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOSPOLDER measurements," J. Geophys. Res., Vol. 106, No. D11, 12139-12153, Jun. 2001. Google Scholar
93. Huang, X., P. Yang, G. Kattawar, and K. N. Liou, "Effect of mineral dust aerosol aspect ratio on polarized reflectance," J. Quant. Spectrosc. Radiat. Transf., Vol. 151, 97-109, Jan. 2015. Google Scholar
94. Cox, C. and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun's glitter," J. Opt. Soc. Am., Vol. 44, No. 11, 838-850, Nov. 1954. Google Scholar
95. Stegmann, P. G. and P. Yang, "A regional, size-dependent, and causal effective medium model for Asian and Saharan mineral dust refractive index spectra," J. Aerosol. Sci., Vol. 114, 327-341, Dec. 2017. Google Scholar
96. Jarvis, R. A., "On the identification of the convex hull of a finite set of points in the plane," Inf. Process. Lett., Vol. 2, No. 1, 18-21, Mar. 1973. Google Scholar
97. ElGindy, H., H. Everett, and G. Toussaint, "Slicing an ear using prune-and-search," Pattern Recognit. Lett., Vol. 14, No. 9, 719-722, Sep. 1993. Google Scholar