Vol. 164
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-03-19
Broadband Plasmonic Circuitry Enabled by Channel Domino Spoof Plasmons
By
Progress In Electromagnetics Research, Vol. 164, 109-118, 2019
Abstract
Building of compact plasmonic integrated circuits based on domino spoof plasmons (DSPs) is an important requirement and still a challenge. In this work, we report the first demonstration of two kinds of channel domino plasmonic circuitries, which consist of an easy-to-manufacture periodic chain of metallic box-shaped elements inside two finite metallic plates. We reveal that only the channel DSPs itself rather than the hybrid TE10 and DSPs modes is supported in the part of the channel domino plasmonic waveguide with or without the metallic vias on both sides. Two channel domino plasmonic filters based on the efficient transition structures are designed, and the simulated S-parameters and near electric field distributions show excellent transmission performance in broadband. Utilizing the lateral insensitive property of these two channel DSPs, two kinds of broadband plasmonic power dividers/combiners are firstly implemented. Excellent transmission performance validates our optimizations and indicates that the proposed scheme can be easily extended to other bands. This work provides a new route for construction of deep-subwavelength DSP devices in application of high integration of microwave and terahertz circuits.
Citation
Liangliang Liu, Li Ran, Huadong Guo, Xinlei Chen, and Zhuo Li, "Broadband Plasmonic Circuitry Enabled by Channel Domino Spoof Plasmons," Progress In Electromagnetics Research, Vol. 164, 109-118, 2019.
doi:10.2528/PIER18120502
References

1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.        Google Scholar

2. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.

3. Pitarke, J. M., V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys., Vol. 70, No. 1, 1, 2006.        Google Scholar

4. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.        Google Scholar

5. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A, Pure Appl. Opt., Vol. 7, No. 2, S97-S101, 2005.        Google Scholar

6. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005.        Google Scholar

7. Williams, C. R., S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photon., Vol. 2, No. 3, 175-179, 2008.        Google Scholar

8. Liu, L. L., Z. Li, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, "Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films," J. Appl. Phys., Vol. 116, No. 1, 013501, 2014.        Google Scholar

9. Wu, J. J., "Subwavelength microwave guiding by periodically corrugated strip line," Progress In Electromagnetics Research, Vol. 104, 113-123, 2010.        Google Scholar

10. Liao, Z., J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, "Broadband transition between microstrip line and conformal surface plasmon waveguide," J. Phys. D. Appl. Phys., Vol. 47, No. 31, 315103, 2014.        Google Scholar

11. Ma, H. F., X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, "Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons," Laser Photon. Rev., Vol. 8, No. 1, 146-151, 2014.        Google Scholar

12. Liu, L. L., Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, C. Q., and Gu, "Dualband trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes," Appl. Phys. Lett., Vol. 107, No. 20, 201602, 2015.        Google Scholar

13. Cui, T. J., "Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves," J. opt., Vol. 19, No. 4, 2017.        Google Scholar

14. Cui, T. J., "Microwave metamaterials," National Sci. Rev., Vol. 5, No. 2, 134-136, 2018.        Google Scholar

15. Zhou, Y. J. and B. J. Yang, "Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves," Appl. Opt., Vol. 54, No. 14, 4529-4533, 2015.        Google Scholar

16. Zhang, H. C., Y. F. Fan, J. Guo, X. J. Fu, and T. J. Cui, "Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials," ACS Photon., Vol. 3, No. 1, 139-146, 2016.        Google Scholar

17. Liu, L. L., L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, "Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials," Adv. Sci., 1800661, 2018.        Google Scholar

18. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Dominguez, F. J.Garcia-Vidal, L. Martin- Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, 754-764, 2010.        Google Scholar

19. Nesterov, M. L., D. Martin-Cano, A. I. Fernandez-Dominguez, E.Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Geometrically induced modification of surface plasmons in the optical and telecom regimes," Opt. Lett., Vol. 35, No. 3, 517-520, 2010.        Google Scholar

20. Zhao, W. S., O. M. Eldaiki, R. X. Yang, and Z. L. Lu, "Deep subwavelength waveguiding and focusing based on designer surface plasmons," Opt. Express, Vol. 18, No. 20, 21498-21503, 2010.        Google Scholar

21. Brock, E. M. G., E. Hendry, and A. P. Hibbins, "Subwavelength lateral confinement of microwave surface waves," Appl. Phys. Lett., Vol. 99, 051108, 2011.        Google Scholar

22. Cano, D. M., O. Q. Teruel, E. Moreno, L. Martin-Moreno, and F. J.Garcia-Vidal, "Waveguided spoof surface plasmons with deep-subwavelength lateral confinement," Opt. Lett., Vol. 36, No. 23, 4635-4637, 2011.        Google Scholar

23. Ma, Y. G., L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high frequency circuit," Opt. Express, Vol. 19, 189-198, 2011.        Google Scholar

24. Boroujeni, M. A., K. Altmann, B. Scherger, C., Jansen, M. Shahabadi, and M. Koch, "Terahertz parallel-plate ladder waveguide with highly confined guided modes," IEEE Trans. Terahertz Science and Tech., Vol. 3, No. 1, 87-95, 2013.        Google Scholar

25. Kumar, G., S. S. Li, M. M. Jadidi, and T. E. Murphy, "Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars," New J. Phys., Vol. 15, 085031, 2013.        Google Scholar

26. Wu, J. J., H. E. Lin, T. J. Yang, Y.-H. Kao, H.-L. Chiueh, and D. J. Hou, "Open waveguide based on low frequency spoof surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 5, 58-62, 2013.        Google Scholar

27. Teruel, O. Q., "Controlled radiation from dielectric slabs over spoof surface plasmon waveguides," Progress In Electromagnetics Research, Vol. 140, 169-179, 2013.        Google Scholar

28. Woolf, D., M. A. Kats, and F. Capasso, "Spoof surface plasmon waveguide forces," Opt. Lett., Vol. 39, No. 3, 517-520, 2014.        Google Scholar

29. Liu, L. L., Z. Li, B. Z. Xu, J. Yan, P. P. Ning, and C. Q. Gu, "A high-efficiency rectangular waveguide to Domino plasmonic waveguide converter in X-band," 2014 3rd IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 974-977, July 2014.        Google Scholar

30. Liu, L. L., Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, J. Yan, and X. Y. Chen, "High-efficiency transition between rectangular waveguide and domino plasmonic waveguide," AIP Adv., Vol. 5, No. 2, 027105, 2015.        Google Scholar

31. Liu, L. L., Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J.Zhou, Q. Qing, P. Shum, and Y. Luo, "Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 65, No. 6, 2008-2018, 2017.        Google Scholar

32. Zhang, Q., H. C. Zhang, H. Wu, and T. J. Cui, "A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters," Sci. Rep., Vol. 5, 16531, 2015.        Google Scholar

33. Guan, D. F., P. You, Q. Zhang, Z. B. Yang, H. W. Liu, and S. W. Yong, "Slow-wave half-mode substrate integrated waveguide using spoof surface plasmon polariton structure," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 6, 2946-2952, 2018.        Google Scholar

34. Chen, P., L. P. Li, K. Yang, and Q. Chen, "Hybrid spoof surface plasmon polariton and substrate integrated waveguide broadband bandpass filter with wide out-of-band rejection," IEEE Micro. and Wireless Components Lett., Vol. 28, No. 11, 984-986, 2018.        Google Scholar

35. Guan, D. F., P. You, Q. Zhang, K. Xiao, and S. W. Yong, "Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter," IEEE Trans. Micro. Theory Techn., Vol. 65, No. 12, 4925-4932, 2017.        Google Scholar

36. Wu, Q. H., G. R. Ding, J. L. Wang, and Y. D. Yao, "Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing," IEEE Trans. on Wireless Commun., Vol. 12, No. 2, 516-526, 2013.        Google Scholar

37. Ding, G. R., J. L. Wang, Q. H. Wu, Y. D. Yao, F. Song, and T. A.Tsiftsis, "Cellular-basestation-assisted device-to-device communications in TV white space," IEEE J. on Selected Areas in Commun., Vol. 34, No. 1, 107-121, 2016.        Google Scholar

38. Ding, G. R., J. L. Wang, Q. H. Wu, Y. D. Yao, R. P. Li, H. G., Zhang, and Y. L. Zou, "On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing," IEEE Commun. Magazine, Vol. 53, No. 7, 178-183, 2015.        Google Scholar

39. Chen, X. P. and K. Wu, "Low-loss ultra-wideband transition between conductor-backed coplanar waveguide and substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 349-352, 2009.        Google Scholar

40. Taringou, F. and J. Bornemann, "New substrate-integrated to coplanar waveguide transition," Proceedings of the 41st European Microwave Conference, 428-431, Manchester, UK, October 2011.        Google Scholar

41. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 53, No. 1, 66-73, 2005.        Google Scholar