1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003. Google Scholar
2. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.
3. Pitarke, J. M., V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys., Vol. 70, No. 1, 1, 2006. Google Scholar
4. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science, Vol. 305, No. 5685, 847-848, 2004. Google Scholar
5. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A, Pure Appl. Opt., Vol. 7, No. 2, S97-S101, 2005. Google Scholar
6. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005. Google Scholar
7. Williams, C. R., S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photon., Vol. 2, No. 3, 175-179, 2008. Google Scholar
8. Liu, L. L., Z. Li, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, "Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films," J. Appl. Phys., Vol. 116, No. 1, 013501, 2014. Google Scholar
9. Wu, J. J., "Subwavelength microwave guiding by periodically corrugated strip line," Progress In Electromagnetics Research, Vol. 104, 113-123, 2010. Google Scholar
10. Liao, Z., J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, "Broadband transition between microstrip line and conformal surface plasmon waveguide," J. Phys. D. Appl. Phys., Vol. 47, No. 31, 315103, 2014. Google Scholar
11. Ma, H. F., X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, "Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons," Laser Photon. Rev., Vol. 8, No. 1, 146-151, 2014. Google Scholar
12. Liu, L. L., Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, C. Q., and Gu, "Dualband trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes," Appl. Phys. Lett., Vol. 107, No. 20, 201602, 2015. Google Scholar
13. Cui, T. J., "Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves," J. opt., Vol. 19, No. 4, 2017. Google Scholar
14. Cui, T. J., "Microwave metamaterials," National Sci. Rev., Vol. 5, No. 2, 134-136, 2018. Google Scholar
15. Zhou, Y. J. and B. J. Yang, "Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves," Appl. Opt., Vol. 54, No. 14, 4529-4533, 2015. Google Scholar
16. Zhang, H. C., Y. F. Fan, J. Guo, X. J. Fu, and T. J. Cui, "Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials," ACS Photon., Vol. 3, No. 1, 139-146, 2016. Google Scholar
17. Liu, L. L., L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, "Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials," Adv. Sci., 1800661, 2018. Google Scholar
18. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Dominguez, F. J.Garcia-Vidal, L. Martin- Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, 754-764, 2010. Google Scholar
19. Nesterov, M. L., D. Martin-Cano, A. I. Fernandez-Dominguez, E.Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Geometrically induced modification of surface plasmons in the optical and telecom regimes," Opt. Lett., Vol. 35, No. 3, 517-520, 2010. Google Scholar
20. Zhao, W. S., O. M. Eldaiki, R. X. Yang, and Z. L. Lu, "Deep subwavelength waveguiding and focusing based on designer surface plasmons," Opt. Express, Vol. 18, No. 20, 21498-21503, 2010. Google Scholar
21. Brock, E. M. G., E. Hendry, and A. P. Hibbins, "Subwavelength lateral confinement of microwave surface waves," Appl. Phys. Lett., Vol. 99, 051108, 2011. Google Scholar
22. Cano, D. M., O. Q. Teruel, E. Moreno, L. Martin-Moreno, and F. J.Garcia-Vidal, "Waveguided spoof surface plasmons with deep-subwavelength lateral confinement," Opt. Lett., Vol. 36, No. 23, 4635-4637, 2011. Google Scholar
23. Ma, Y. G., L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high frequency circuit," Opt. Express, Vol. 19, 189-198, 2011. Google Scholar
24. Boroujeni, M. A., K. Altmann, B. Scherger, C., Jansen, M. Shahabadi, and M. Koch, "Terahertz parallel-plate ladder waveguide with highly confined guided modes," IEEE Trans. Terahertz Science and Tech., Vol. 3, No. 1, 87-95, 2013. Google Scholar
25. Kumar, G., S. S. Li, M. M. Jadidi, and T. E. Murphy, "Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars," New J. Phys., Vol. 15, 085031, 2013. Google Scholar
26. Wu, J. J., H. E. Lin, T. J. Yang, Y.-H. Kao, H.-L. Chiueh, and D. J. Hou, "Open waveguide based on low frequency spoof surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 5, 58-62, 2013. Google Scholar
27. Teruel, O. Q., "Controlled radiation from dielectric slabs over spoof surface plasmon waveguides," Progress In Electromagnetics Research, Vol. 140, 169-179, 2013. Google Scholar
28. Woolf, D., M. A. Kats, and F. Capasso, "Spoof surface plasmon waveguide forces," Opt. Lett., Vol. 39, No. 3, 517-520, 2014. Google Scholar
29. Liu, L. L., Z. Li, B. Z. Xu, J. Yan, P. P. Ning, and C. Q. Gu, "A high-efficiency rectangular waveguide to Domino plasmonic waveguide converter in X-band," 2014 3rd IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 974-977, July 2014. Google Scholar
30. Liu, L. L., Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, J. Yan, and X. Y. Chen, "High-efficiency transition between rectangular waveguide and domino plasmonic waveguide," AIP Adv., Vol. 5, No. 2, 027105, 2015. Google Scholar
31. Liu, L. L., Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J.Zhou, Q. Qing, P. Shum, and Y. Luo, "Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 65, No. 6, 2008-2018, 2017. Google Scholar
32. Zhang, Q., H. C. Zhang, H. Wu, and T. J. Cui, "A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters," Sci. Rep., Vol. 5, 16531, 2015. Google Scholar
33. Guan, D. F., P. You, Q. Zhang, Z. B. Yang, H. W. Liu, and S. W. Yong, "Slow-wave half-mode substrate integrated waveguide using spoof surface plasmon polariton structure," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 6, 2946-2952, 2018. Google Scholar
34. Chen, P., L. P. Li, K. Yang, and Q. Chen, "Hybrid spoof surface plasmon polariton and substrate integrated waveguide broadband bandpass filter with wide out-of-band rejection," IEEE Micro. and Wireless Components Lett., Vol. 28, No. 11, 984-986, 2018. Google Scholar
35. Guan, D. F., P. You, Q. Zhang, K. Xiao, and S. W. Yong, "Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter," IEEE Trans. Micro. Theory Techn., Vol. 65, No. 12, 4925-4932, 2017. Google Scholar
36. Wu, Q. H., G. R. Ding, J. L. Wang, and Y. D. Yao, "Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing," IEEE Trans. on Wireless Commun., Vol. 12, No. 2, 516-526, 2013. Google Scholar
37. Ding, G. R., J. L. Wang, Q. H. Wu, Y. D. Yao, F. Song, and T. A.Tsiftsis, "Cellular-basestation-assisted device-to-device communications in TV white space," IEEE J. on Selected Areas in Commun., Vol. 34, No. 1, 107-121, 2016. Google Scholar
38. Ding, G. R., J. L. Wang, Q. H. Wu, Y. D. Yao, R. P. Li, H. G., Zhang, and Y. L. Zou, "On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing," IEEE Commun. Magazine, Vol. 53, No. 7, 178-183, 2015. Google Scholar
39. Chen, X. P. and K. Wu, "Low-loss ultra-wideband transition between conductor-backed coplanar waveguide and substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 349-352, 2009. Google Scholar
40. Taringou, F. and J. Bornemann, "New substrate-integrated to coplanar waveguide transition," Proceedings of the 41st European Microwave Conference, 428-431, Manchester, UK, October 2011. Google Scholar
41. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 53, No. 1, 66-73, 2005. Google Scholar