1. Pierri, R. and G. Leone, "Inverse scattering of dielectric cylinders by a second-order Born approximation," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 1, 374-382, 1999.
doi:10.1109/36.739072 Google Scholar
2. Haddadin, O. S. and E. S. Ebbini, "Imaging strongly scattering media using a multiple frequency distorted Born iterative method," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, Vol. 45, No. 6, 1485-1496, 1998.
doi:10.1109/58.738288 Google Scholar
3. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334 Google Scholar
4. Zhang, L., W. Li, and F. Li, "Tomographic reconstruction using the distorted Rytov iterative method with phaseless data," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 3, 479-483, 2008.
doi:10.1109/LGRS.2008.919818 Google Scholar
5. Chew, W. C. and Q. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 4, 878-884, 1994.
doi:10.1109/36.298015 Google Scholar
6. Zheng, H., C. Wang, and E. Li, "Modification of enhanced distorted Born iterative method for the 2D inverse problem," IET Microw. Antenna P., Vol. 10, No. 10, 1036-1042, 2016.
doi:10.1049/iet-map.2015.0239 Google Scholar
7. Lavarello, R. and M. Oelze, "A study on the reconstruction of moderate contrast targets using the distorted Born iterative method," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, Vol. 55, No. 1, 112-124, 2008.
doi:10.1109/TUFFC.2008.621 Google Scholar
8. Lavarello, R. J. and M. L. Oelze, "Tomographic reconstruction of three-dimensional volumes using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 28, No. 10, 1643-1653, 2009.
doi:10.1109/TMI.2009.2026274 Google Scholar
9. Hesford, A. J. and W. C. Chew, "Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm," The Journal of the Acoustical Society of America, Vol. 128, No. 2, 679-690, 2010.
doi:10.1121/1.3458856 Google Scholar
10. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242 Google Scholar
11. Tu, H., W. Chien, C. Chiu, and T. Hu, "Comparison of two different shape descriptions in the half-space inverse problem," SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, 158-161, 2005. Google Scholar
12. Chiu, C. and Y. Kiang, "Electromagnetic inverse scattering of a conducting cylinder buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 40, No. 12, 1562-1565, 1992.
doi:10.1109/8.204747 Google Scholar
13. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Numerical electromagnetic inverse-scattering solutions for two-dimensional infinite dielectric cylinders buried in a lossy half-space," IEEE Trans. Microw. Theory Techn., Vol. 41, No. 2, 352-357, 1993.
doi:10.1109/22.216482 Google Scholar
14. Mahmoud, S. F., S. M. Ali, and J. R. Wait, "Electromagnetic scattering from a buried cylindrical inhomogeneity inside a lossy earth," Radio Sci., Vol. 16, No. 6, 1285-1298, 1981.
doi:10.1029/RS016i006p01285 Google Scholar
15. Delbary, F., K. Erhard, R. Kress, R. Potthast, and J. Schulz, "Inverse electromagnetic scattering in a two-layered medium with an application to mine detection," Inverse Probl., Vol. 24, No. 10, 1-26, 2008. Google Scholar
16. Li, F., Q. H. Liu, and L. P. Song, "Three-dimensional reconstruction of objects buried in layered media using born and distorted Born iterative methods," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 2, 107-111, 2004.
doi:10.1109/LGRS.2004.826562 Google Scholar
17. Zhang, P., P. Fei, X. Wen, and F. Nian, "Reconstruction of objects buried in layered media based on an equivalent current source," Progress In Electromagnetics Research M, Vol. 44, 171-182, 2015.
doi:10.2528/PIERM15081807 Google Scholar
18. Galdi, V., H. Feng, D. Castaon, W. C. Karl, and L. B. Felsen, "Moderately rough surface underground imaging via short-pulse quasi-ray Gaussian beams," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2304-2318, 2003.
doi:10.1109/TAP.2003.816363 Google Scholar
19. Firoozabadi, R., E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, "Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 1, 104-117, 2007.
doi:10.1109/TGRS.2006.883462 Google Scholar
20. El-Shenawee, M., C. M. Rappaport, E. Miller, and M. Silevitch, "Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: Use of the steepest descent fast multipole method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1174-1182, 2001.
doi:10.1109/36.927436 Google Scholar
21. Ozdemir, O. and Y. Altuncu, "A reconstruction of dielectric objects buried under a rough surface," 13. International Workshop on Optimization and Inverse Problems in Electromagnetism, 2014. Google Scholar
22. Altuncu, Y., "Reconstruction of 3D dielectric objects buried under 2D rough urfaces by using contrast source inversion method," 13. International Workshop on Optimization and Inverse Problems in Electromagnetism, 2014. Google Scholar
23. Tetik, E. and I. Akduman, "3D imaging of dielectric objects buried under a rough surface by using CSI," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015.
doi:10.1155/2015/179304 Google Scholar
24. Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923.
25. Sung Chan, J. and U. Jin Choi, "Convergence analyses of the born iterative method and the distorted born iterative method," Numerical Functional Analysis and Optimization, Vol. 20, No. 3-4, 301-316, 2007. Google Scholar
26. Gilmore, C., P. Mojabi, and J. LoVetri, "Comparison of an enhanced distorted Born iterative method and the multiplicative-regularized contrast source inversion method," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2341-2351, 2009.
doi:10.1109/TAP.2009.2024478 Google Scholar
27. Van den Berg, P. M., A. L. Van Broekhoven, and A. Abubakar, "Extended contrast source inversion," Inverse Probl., Vol. 15, 1325-1344, 1996. Google Scholar
28. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Probl., Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013 Google Scholar
29. Abubakar, A., P. M. Van den Berg, and J. J. Mallorqui, "Imaging of biomedical data using a multiplicative regularized contrast source inversion method," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 7, 1761-1771, 2002.
doi:10.1109/TMTT.2002.800427 Google Scholar
30. Bozza, G. and M. Pastorino, "An inexact Newton-based approach to microwave imaging within the contrast source formulation," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1122-1132, 2009.
doi:10.1109/TAP.2009.2015820 Google Scholar
31. Bloemenkamp, R. F., A. Abubakar, and P. M. Van den Berg, "Inversion of experimental multifrequency data using the contrast source inversion method," Inverse Probl., Vol. 17, 1611-1622, 2001.
doi:10.1088/0266-5611/17/6/305 Google Scholar
32. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 1, 42-49, 2010.
doi:10.1109/TGRS.2009.2025122 Google Scholar
33. Ye, X. and X. Chen, "Subspace-based distorted-born iterative method for solving inverse scattering problems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7224-7232, 2017.
doi:10.1109/TAP.2017.2766658 Google Scholar
34. Altuncu, Y., A. Yapar, and I. Akduman, "On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 6, 1435-1443, 2006.
doi:10.1109/TGRS.2006.870436 Google Scholar
35. Tikhonov, A. N. and V. Y. Arsenin, Solution of Ill-posed Problems, Winston and Sons., Washington, 1977.
36. Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problem, Springer, New York, 1996.
doi:10.1007/978-1-4612-5338-9