Vol. 165
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-10-09
Uniform Beamwidth UWB Feed Antenna Using Lossy Transmission Lines
By
Progress In Electromagnetics Research, Vol. 165, 119-130, 2019
Abstract
The ideal ultra-wideband (UWB) antenna feed for lens and reflector systems radiates a uniform and customizable beamwidth vs. frequency. Here, a new antenna concept for radiating frequency-independent Gaussian beams with arbitrary bandwidths and beamwidths is reported. It is analytically shown how to resistively load a transmission line network to maintain a Gaussian amplitude taper across an antenna array aperture. In contrast to many other feed antennas, the radiation properties here can be tailored without time-consuming full wave optimizations. The radiated beamwidth, bandwidth, antenna size, radiation efficiency, and gain can all be quickly estimated using the derived closed-form expressions. An example, 16x16 Vivaldi element array is fed with a network of resistively loaded microstrip lines. The simulated array radiates a Gaussian beam with 10 dB full beamwidth of 35°±5° and directivity of 20 dB±1.5 dB over 6.5 GHz-19 GHz (3:1 bandwidth ratio). However, the radiation efficiency is inherently low due to the large loss associated with generating the Gaussian amplitude taper at all frequencies. The example array has a simulated radiation efficiency of 1% at the higher operating frequencies. The array was fabricated and measured. The measured beamwidths agree well with simulation to validate the reported theory. This architecture is a particularly attractive option for feed antennas that require customizable directivities, and can tolerate low radiation efficiencies such as test and measurement.
Citation
Carl Pfeiffer Thomas Steffen George Kakas , "Uniform Beamwidth UWB Feed Antenna Using Lossy Transmission Lines," Progress In Electromagnetics Research, Vol. 165, 119-130, 2019.
doi:10.2528/PIER19081202
http://www.jpier.org/PIER/pier.php?paper=19081202
References

1. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. on Antennas and Propagation, Vol. 38, No. 10, 1537, 1990.
doi:10.1109/8.59765

2. Goldsmith, P. F., "Quasi-optical techniques," Proceedings of the IEEE, Vol. 80, 1729-1747, 1992.
doi:10.1109/5.175252

3. Chang, L.-C. T. and W. D. Burnside, "An ultrawide-bandwidth tapered resistive TEM horn antenna," IEEE Trans. on Antennas and Propagation, Vol. 48, No. 12, 1848, 2000.
doi:10.1109/8.901273

4. Akgiray, A., S. Weinreb, W. A. Imbraile, and C. Beaudoin, "Circular quadruple-ridged flared horn achieving near-constant beamwidth over multioctave bandwidth: Design and measurements," IEEE Trans. on Antennas and Propagation, Vol. 61, No. 3, 1099, 2013.
doi:10.1109/TAP.2012.2229953

5. Olsson, R., P.-S. Kildal, and S. Weinreb, "The Eleven antenna: A compact low-profile decade bandwidth dual polarized feed for reflector antennas," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 2, 368, 2006.
doi:10.1109/TAP.2005.863392

6. Yang, J., X. Chen, N. Wadefalk, and P.-S. Kildal, "Design and realization of a linearly polarized Eleven feed for 1–10 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 64, 2009.
doi:10.1109/LAWP.2008.2011148

7. Gawande, R. and R. Bradley, "Towards an ultra wideband low noise active sinuous feed for next generation radio telescopes," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 6, 1945, 2011.
doi:10.1109/TAP.2011.2122238

8. Bruni, S., A. Neto, and F. Marliani, "The ultrawideband leaky lens antenna," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 10, 2642, 2007.
doi:10.1109/TAP.2007.905942

9. Ivashina, M. V., O. Iupikov, R. Maaskant, W. A. V. Cappellen, and T. Oosterloo, "An optimal beamforming strategy for wide-field surveys with phased-array-fed reflector antennas," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 6, 1864, 2011.
doi:10.1109/TAP.2011.2123865

10. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. on Microwave Theory and Techniques, Vol. 50, No. 12, 2702, 2002.
doi:10.1109/TMTT.2002.805197

11. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

12. Schaubert, D. H., S. Kasturi, A. O. Boryssenko, and W. M. Elsallal, "Vivaldi antenna arrays for wide bandwidth and electronic scanning," European Conference on Antennas and Propagation, Edinburgh, UK, 2007.

13. Kindt, R. and J. Logan, "Benchmarking ultrawideband phased antenna arrays: Striving for clearer and more informative reporting practices," IEEE Antennas and Propagation Magazine, Vol. 60, No. 3, 34, 2018.
doi:10.1109/MAP.2018.2818464