Vol. 167
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-08-23
A Combined Active and Passive Method for the Remote Sensing of Ice Sheet Temperature Profiles
By
, Vol. 167, 111-126, 2020
Abstract
The Ultra-Wideband Software defined microwave radiometer (UWBRAD) was developed to probe internal ice sheet temperatures using 0.5-2 GHz microwave radiometry. The airborne brightness temperature data of UWBRAD show a significant reduction due to reflections of surface layering of density fluctuations making difficult the retrieval of subsurface temperature in the kilometer range of depth. Such reflections can be measured by the ultra-wideband radar in the same frequency range suggesting a combined active and passive remote sensing of polar ice sheets. In this paper, we develop a coherent reflectivity model for both ice sheet thermal emission and backscattering. Maxwell equations are used to calculate the coherent reflections from the cap layers, and the WKB approximation is used to calculate the transmission for the slowly varying profile below the cap layers. Results are then shown to demonstrate the use of radar measurements to compensate reflection effects on brightness temperatures. It is shown that the reflections corrected brightness temperature is directly related to the physical temperature and absorption profile making possible the retrieval of subsurface temperature profile with multi-frequency measurements
Citation
Haokui Xu Leung Tsang Joel Johnson Kenneth C. Jezek Jie-Bang Yan Prasad Gogineni , "A Combined Active and Passive Method for the Remote Sensing of Ice Sheet Temperature Profiles," , Vol. 167, 111-126, 2020.
doi:10.2528/PIER20030601
http://www.jpier.org/PIER/pier.php?paper=20030601
References

1. Masson-Delmotte, V., P. Zhai, H. O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, "Global Warming of 1.5C. An IPCC Special Report on the impacts of global warming of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty," IPCC, 2018: Summary for Policymakers, World Meteorological Organization, Geneva, Switzerland, 2018.

2. Meier, W., G. Hovelsrud, B. van Oort, J. Key, K. Kovacs, C. Michel, C. Hass, M. Granskog, S. Gerland, D. Perovich, A. Makshtas, and J. Reist, "Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity," Rev. Geophys., Vol. 52, 185-217, 2014.
doi:10.1002/2013RG000431

3. Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. Lenaerts, "Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise," Geophys. Res. Lett., Vol. 38, L05503, 2011.
doi:10.1029/2011GL047109

4. Alley, R. B., P. U. Clark, P. Huybrechts, and I. Joughin, "Ice-sheet and sea-level changes," Science, Vol. 310, No. 5747, 456-460, 2005.
doi:10.1126/science.1114613

5. Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson, "Recent contributions of glaciers and ice caps to sea level rise," Nature, Vol. 482, No. 7386, 514, 2012.
doi:10.1038/nature10847

6. Hock, R., M. de Woul, V. Radic, and M. Dyurgerov, "Mountain glaciers and ice caps around Antarctica make a large sealevel rise contribution," Geophysical Research Letters, Vol. 36, L07501, 2012.

7. Zwally, H. J., M. B. Giovinetto, J. Li, H. G. Cornejo, M. A. Beckley, A. C. Brenner, and D. Yi, "Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002," Journal of Glaciology, Vol. 51, No. 175, 509-527, 2005.
doi:10.3189/172756505781829007

8. Matsuoka, K., R. C. Hindmarsh, G. Moholdt, M. J. Bentley, H. D. Pritchard, J. Brown, and T. Hattermann, "Antarctic ice rises and rumples: Their properties and significance for ice-sheet dynamics and evolution," Earth-Science Reviews, Vol. 150, 724-745, 2015.
doi:10.1016/j.earscirev.2015.09.004

9. Gagliardini, O., G. Durand, T. Zwinger, R. C. A. Hindmarsh, and E. Le Meur, "Coupling of iceshelf melting and buttressing is a key process in ice-sheets dynamics," Geophysical Research Letters, Vol. 37, L14501, 2010.

10. Matelli, E. and C. Schoof, "Thermally-activated sliding in ice sheet flow," American Geophysical Union, Fall Meeting 2018, 2018.

11. Mantelli, E. and C. Schoof, "Ice sheet dynamics with temperature-dependent sliding," Geophysical Research Abstracts, Vol. 21, EGU2019-10993-5, 2019.

12. Hill, B., et al., "Using radio-wave attenuation to constrain ice temperature in regions of fast flow," American Geophysical Union, Fall Meeting 2018, 2018.

13. Winebrenner, D. P., S. Tyler, and J. Selker, "Diagnosis of glacier and ice bed dynamics by means of Raman distributed temperature sensing and melt-probe deployment," American Geophysical Union, Fall Meeting 2018, 2018.

14. Forster, R. R., et al., "Extensive liquid meltwater storage in firn within the Greenland ice sheet," Nat. Geosci., Vol. 7, 95-98, 2014.
doi:10.1038/ngeo2043

15. Miller, O., D. K. Solomon, C. Miege, L. S. Koenig, R. R. Forster, L. N. Montgomery, N. Schmerr, S. R. M. Ligtenberg, A. Legchenko, and L. Brucker, "Hydraulic conductivity of a Firn Aquifer in Southeast Greenland," Front. Earth Sci., Vol. 5, No. 38, 2017.

16. Andrews, M. J., et al., "The ultrawideband software-defined microwave radiometer: Instrument description and initial campaign results," IEEE Trans. Geosci. Remote. Sens., Vol. 56, No. 10, 5923-5935, Oct. 2018.
doi:10.1109/TGRS.2018.2828604

17. Johnson, J., K. Jezek, M. Andrews, M. Durand, Y. Duan, C. Yardim, A. Bringer, G. Macelloni, M. Brogioni, S. Tan, and L. Tsang, "Measurement of ice sheet internal temperature profiles with ultrawidebandmicrowave radiometry," American Geophysical Union, Fall Meeting 2018, 2018.

18. Yardim, C., J. T. Johnson, K. C. Jezek, M. Andrews, M. Durand, Y. Duan, S. Tan, L. Tsang, M. Brogioni, G. Macelloni, and A. Bringer, "Greenland ice sheet subsurface temperature estimation using ultra-wideband microwave radiometry," IEEE Trans. Geosc. Rem. Sens., 2019.

19. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves: Theories and Applications, Vol. 1, 203-217, Ch. 5, Wiley, Hoboken, NJ, USA, 2000.
doi:10.1002/0471224286

20. Rytov, S. M., Theory of Electromagnetic Radiation and Fluctuations, Publishing House, Academy of Science, USSR, 1953.

21. Tan, S., et al., "Physical models of layered polar firn brightness temperatures from 0.5 to 2 GHz," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 8, No. 7, 3681-3691, Jul. 2015.
doi:10.1109/JSTARS.2015.2403286

22. Tan, S., L. Tsang, H. Xu, J. T. Johnson, K. C. Jezek, C. Yardim, M. Durand, and Y. Duan, "A partially coherent approach for modelong polar ice sheet 0.5–2 GHz thermal emission," IEEE Trans. Geosc. Rem. Sens., 2019.

23. Van der Veen, J., Fundamentals of Glacier Dynamics, A. A. Balkema, 462, Rotterdam, The Netherlands, 1999.

24. Matzler, C. and A. Wiesmann, "Extension of the microwave emission model of layered snowpacks to coarse-grained snow," Remote Sens. Environ., Vol. 70, 317-325, 1999.
doi:10.1016/S0034-4257(99)00047-4

25. Matzler, C., "Microwave permittivity of dry snow," IEEE Trans. Geosci. Remote. Sens., Vol. 34, No. 2, 573-581, Mar. 1996.
doi:10.1109/36.485133

26. Tiuri, M. E., A. H. Sihvola, E. G. Nyfors, and M. T. Hallikainen, "The complex dielectric constant of snow at microwave frequencies," IEEE J. Oceanic Eng., Vol. 9, No. 5, 377-382, Dec. 1984.
doi:10.1109/JOE.1984.1145645