1. Le Cun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol. 521, No. 7553, 436-444, 2015. Google Scholar
2. Li, H., Y. Yang, D. Chen, and Z. Lin, "Optimization algorithm inspired deep neural network structure design," Proceedings of the 10th Asian Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, Vol. 95, 614-629, J. Zhu and I. Takeuchi, eds., Nov. 14–16, 2018. Google Scholar
3. Yang, Y., J. Sun, H. Li, and Z. Xu, "Deep ADMM-Net for compressive sensing MRI," Advances in Neural Information Processing Systems, Vol. 29, 10-18, Curran Associates, Inc., 2016. Google Scholar
4. Lu, Y., A. Zhong, Q. Li, and B. Dong, "Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations," International Conference on Machine Learning, 3276-3285, 2018. Google Scholar
5. E, W., "A proposal on machine learning via dynamical systems," Communications in Mathematics and Statistics, Vol. 5, No. 1, 1-11, 2017. Google Scholar
6. E, W., J. Han, and Q. Li, "A mean-field optimal control formulation of deep learning," Research in the Mathematical Sciences, Vol. 6, No. 1, 10, 2019. Google Scholar
7. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.
8. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, Wiley, 2018.
9. McCann, M. T., K. H. Jin, and M. Unser, "Convolutional neural networks for inverse problems in imaging: A review," IEEE Signal Processing Magazine, Vol. 34, No. 6, 85-95, 2017. Google Scholar
10. Lucas, A., M. Iliadis, R. Molina, and A. K. Katsaggelos, "Using deep neural networks for inverse problems in imaging: Beyond analytical methods," IEEE Signal Processing Magazine, Vol. 35, No. 1, 20-36, 2018. Google Scholar
11. Massa, A., D. Marcantonio, X. Chen, M. Li, and M. Salucci, "DNNs as applied to electromagnetics, antennas, and propagation — A Review," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 11, 2225-2229, 2019. Google Scholar
12. Caorsi, S. and P. Gamba, "Electromagnetic detection of dielectric cylinders by a neural network approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 820-827, 1999. Google Scholar
13. Rekanos, I. T., "Neural-network-based inverse-scattering technique for online microwave medical imaging," IEEE Transactions on Magnetics, Vol. 38, 1061-1064, Mar. 2002. Google Scholar
14. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 927-931, Apr. 2003. Google Scholar
15. Salucci, M., N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, 6818-6832, 2016. Google Scholar
16. Ran, P., Y. Qin, and D. Lesselier, "Electromagnetic imaging of a dielectric micro-structure via convolutional neural networks," 2019 27th European Signal Processing Conference (EUSIPCO), 1-5, IEEE, 2019. Google Scholar
17. Fajardo, J., J. Galvn, F. Vericat, M. Carlevaro, and R. Irastorza, "Phaseless microwave imaging of dielectric cylinders: An artificial neural networks-based approach," Progress In Electromagnetics Research, Vol. 166, 95-105, Dec. 2019. Google Scholar
18. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2019. Google Scholar
19. Yao, H. M., W. E. I. Sha, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 11, 2254-2258, 2019. Google Scholar
20. Guo, R., X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Supervised descent learning technique for 2-D microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3550-3554, 2019. Google Scholar
21. Adler, J. and O. Oktem, "Solving ill-posed inverse problems using iterative deep neural networks," Inverse Problems, Vol. 33, No. 12, 124007, 2017. Google Scholar
22. Chen, G., P. Shah, J. Stang, and M. Moghaddam, "Learning-assisted multi-modality dielectric imaging," IEEE Transactions on Antennas and Propagation, 1-14, 2019. Google Scholar
23. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Transactions on Computational Imaging, Vol. 6, 46-56, 2020. Google Scholar
24. Chen, X., "Subspace-based optimization method for solving inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 48, 42-49, 2010. Google Scholar
25. Sun, Y., Z. Xia, and U. S. Kamilov, "Efficient and accurate inversion of multiple scattering with deep learning," Optics Express, Vol. 26, No. 11, 14678-14688, 2018. Google Scholar
26. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui, "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1819-1825, 2019. Google Scholar
27. Li, L., L. G. Wang, and F. L. Teixeira, "Performance analysis and dynamic evolution of deep convolutional neural network for electromagnetic inverse scattering," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 11, 2259-2263, 2019. Google Scholar
28. Xiao, J., J. Li, Y. Chen, F. Han, and Q. H. Liu, "Fast electromagnetic inversion of inhomogeneous scatterers embedded in layered media by born approximation and 3-D U-Net," IEEE Geoscience and Remote Sensing Letters, 1-5, 2019. Google Scholar
29. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019. Google Scholar
30. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Probl., Vol. 13, 1607-1620, 1997. Google Scholar
31. Khoo, Y. and L. Ying, "SwitchNet: a neural network model for forward and inverse scattering problems," SIAM Journal on Scientific Computing, Vol. 41, No. 5, A3182-A3201, 2019. Google Scholar
32. Wei, Z. and X. Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, 2019. Google Scholar
33. Sun, J., Z. Niu, K. A. Innanen, J. Li, and D. O. Trad, "A theory-guided deep-learning formulation and optimization of seismic waveform inversion," Geophysics, Vol. 85, No. 2, R87-R99, 2020. Google Scholar
34. Unser, M., "A representer theorem for deep neural networks," Journal of Machine Learning Research, Vol. 20, No. 110, 1-30, 2019. Google Scholar
35. Belthangady, C. and L. A. Royer, "Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction," Nature Methods, 1-11, 2019. Google Scholar
36. Zhong, Y., M. Lambert, D. Lesselier, and X. Chen, "A new integral equation method to solve highly nonlinear inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1788-1799, 2016. Google Scholar
37. Zhong, Y., M. Salucci, K. Xu, A. Polo, and A. Massa, "A multiresolution contraction integral equation method for solving highly nonlinear inverse scattering problems," IEEE Transactions on Microwave Theory and Techniques, 1-14, 2019. Google Scholar
38. Hamilton, S. J. and A. Hauptmann, "Deep D-Bar: Real-time electrical impedance tomography imaging with deep neural networks," IEEE Transactions on Medical Imaging, Vol. 37, 2367-2377, Oct. 2018. Google Scholar
39. Wei, Z., D. Liu, and X. Chen, "Dominant-current deep learning scheme for electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2546-2555, 2019. Google Scholar
40. Wei, Z. and X. Chen, "Induced-current learning method for nonlinear reconstructions in electrical impedance tomography," IEEE Transactions on Medical Imaging, 1-9, 2019. Google Scholar
41. Duan, X., S. Taurand, and M. Soleimani, "Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning," Scientific Reports, Vol. 9, No. 1, 8831, 2019. Google Scholar
42. Hauptmann, A., F. Lucka, M. Betcke, N. Huynh, J. Adler, B. Cox, P. Beard, S. Ourselin, and S. Arridge, "Model-based learning for accelerated, limited-view 3-D photoacoustic tomography," IEEE Transactions on Medical Imaging, Vol. 37, 1382-1393, Jun. 2018. Google Scholar
43. Tang, W., T. Shan, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu, "Study on a Poisson’s equation solver based on deep learning technique," 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 1-3, Dec. 2017. Google Scholar