Vol. 169
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-12-31
Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface
By
Progress In Electromagnetics Research, Vol. 169, 103-115, 2020
Abstract
This paper presents a high gain Fabry-Perot antenna with radar cross section (RCS) reduction property. A receiver-transmitter metasurface is designed and used as the partially reflective surface (PRS) of the antenna to realize high gain and wideband RCS reduction. Firstly, the working principle of the unit cell is similar to the reception and radiation of two patch antennas. The unit cell is designed to present high reflectivity through tuning the impedance matching between two patches. This can ensure that the antenna obtains high gain. Then, the ground plane in the middle makes the reflection phase from different sides of the unit cell be tuned independently. Two unit cells with same reflection phase from the bottom side and 180° reflection phase difference from the top side are obtained through tuning the size of the transmitter patch. With the improved chessboard arrangement of these two unit cells, the incident wave can be scattered into many directions. So the metasurface presents a good RCS reduction property. More importantly, thanks to the high reflectivity of the metasurface, almost all the electromagnetic waves from the outside are reflected and rarely enter the cavity. Therefore, the antenna achieves good in band RCS reduction. The measured results of the fabricated antenna agree well with the simulated ones, which verify the correctness of the design. The antennas reaches the maximum gain of 18.2 dBi at 10 GHz. Wideband RCS reduction and good in band RCS reduction are also obtained by the antenna.
Citation
Peng Xie Guang-Ming Wang Hai-Peng Li Ya-Wei Wang Binfeng Zong , "Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface," Progress In Electromagnetics Research, Vol. 169, 103-115, 2020.
doi:10.2528/PIER20062703
http://www.jpier.org/PIER/pier.php?paper=20062703
References

1. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. Jay Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2018.

2. Huang, C., W. Pan, X. Ma, and X. Luo, "Wideband radar cross section reduction of a stacked patch array antenna using metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1369-1372, 2015.

3. Krishnamoorthy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low RCS and polarization reconfigurable antenna using cross slot based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.

4. Liu, Y., Y. Hao, K. Li, and S. Gong, "Wideband and polarization independent radar cross section reduction using holographic metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1028-1031, 2016.

5. Hong, T., S. Wang, Z. Liu, and S. Gong, "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 167-171, 2019.

6. Zhang, W., Y. Liu, S. Gong, J. Wang, and Y. Jiang, "Wideband RCS reduction of a slot array antenna using phase gradient metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2193-2197, Dec. 2018.

7. Tran, X. L., J. Vesely, and F. Dvorak, "Optimization of nonuniform linear antenna array topology," Information and Communication Technologies and Services, Vol. 16, No. 3, 341-349, Sep. 2018.

8. Zakaria, Y. and L. Ivanek, "Propagation modelling of path loss models for wireless communication in urban and rural environments at 1800 GSM frequency band," Information and Communication Technologies and Services, Vol. 14, No. 2, 139-144, Jun. 2016.

9. Zhuang, Y., G. Wang, J. Liang, T. Cai, X. Tang, T. Guo, and Q. Zhang, "Random combinatorial gradient metasurface for broadband wide-angle and polarization independent difusion scattering," Scientific Reports, Vol. 7, 16560, Nov. 2017.

10. Kim, S. H. and Y. J. Yoon, "Wideband radar cross-section reduction on checkerboard metasurfaces with surface wave suppression," IEEE IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 5, 896-900, 2019.

11. Lu, Y., J. Su, J. Liu, Q. Guo, H. Yin, Z. Li, and J. Song, "Ultrawideband monostatic and bistatic RCS reductions for both copolarization and cross polarization based on polarization conversion and destructive interference," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4936-4941, Jul. 2019.

12. Li, Y., J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces," Appl. Phys. Lett., Vol. 104, 221110, 2014.

13. Zhuang, Y., G. Wang, T. Cai, and Q. Zhang, "Design of bifunctional metasurface based on independent control of transmission and reflection," Optics Express, Vol. 26, No. 3, 3594-3603, Feb. 2018.

14. Song, Y., J. Ding, C. Guo, Y. Ren, and J. Zhang, "Ultra broadband backscatter radar cross section reduction based on polarization insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.

15. Joshi, A. and R. Singhal, "Vertex-fed hexagonal antenna with low cross-polarization levels," Information and Communication Technologies and Services, Vol. 17, No. 2, 138-145, Jun. 2019.

16. Mishra, B., V. Singh, and R. Singh, "Gap coupled dual-band petal shape patch antenna for WLAN/WiMAX applications,", Vol. 16, No. 2, 185-198, Jun. 2018.

17. Zhang, L., X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, "Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3374-3383, Jul. 2017.

18. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, S. Li, and T. Li, "Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 590-599, Feb. 2018.

19. Li, K., Y. Liu, Y. Jia, and Y. J. Guo, "A circularly polarized high gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4288-4292, Aug. 2017.

20. Ren, J., W. Jiang, K. Zhang, and S. Gong, "A high-gain circularly polarized fabry-perot antenna with wideband low-RCS property," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 853-856, May 2018.

21. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2534-2537, 2017.

22. Zhou, Y., X. Cao, J. Gao, S. Li, and Y. Zheng, "In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2716-2720, 2017.

23. Zhang, L., C. Liu, C. Ni, M. Kong, and X. Wu, "Low-RCS, circular polarization, and high-gain broadband antenna based on mirror polarization conversion metasurfaces," International Journal of Antennas and Propagation, Vol. 2019, 6098483, Aug. 2019.

24. Ge, Y., Z. Sun, Z. Chen, and Y. Chen, "A high-gain wideband low-profile Fabry-Perot resonator antenna with a conical short horn," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1889-1892, 2016.

25. Sharmaa, A., D. Gangwarb, B. K. Kanaujiac, and S. Dwari, "Gain enhancement and RCS reduction of CP patch antenna using partially reflecting and absorbing metasurface," Electromagnetics, 2019.

26. Xie, P., G. Wang, H. Li, J. Liang, and X. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.

27. Trentini, G. V., "Partially reflecting sheet arrays," IEEE Trans. Antenna Propag., Vol. 4, No. 4, 666-671, Oct. 1956.

28. Foroozesh, A. and L. Shafai, "Investigation into the effects of the reflection phase characteristics of highly-reflective superstrates on resonant cavity antennas," IEEE Trans. Antennas Propag., Vol. 58, 3392-3396, Oct. 2010.