1. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988.
doi:10.1007/BFb0048317
2. Barnes, W. L., A. Dereux, and T. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
3. Takahara, J., Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett., Vol. 22, 475-477, 1997.
doi:10.1364/OL.22.000475 Google Scholar
4. Veronis, G., Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, "Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale," Chin. Opt. Lett., Vol. 7, 302-308, 2009.
doi:10.3788/COL20090704.0302 Google Scholar
5. Han, Z., E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol., Vol. 19, 91-93, 2007.
doi:10.1109/LPT.2006.889036 Google Scholar
6. Park, J., H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express, Vol. 16, 413-425, 2008.
doi:10.1364/OE.16.000413 Google Scholar
7. Hosseini, A., H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express, Vol. 16, 1475-1480, 2008.
doi:10.1364/OE.16.001475 Google Scholar
8. Hosseini, A. and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express, Vol. 14, 11318-11323, 2006.
doi:10.1364/OE.14.011318 Google Scholar
9. Pu, M., N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, "Directional coupler and nonlinear Mach-Zehnder interferometer based on metal insulator-metal plasmonic waveguide," Opt. Express, Vol. 18, 21030-21037, 2010.
doi:10.1364/OE.18.021030 Google Scholar
10. Hosseini, A. and Y. Massoud, "A rectangular metal-insulator-metal based nanoscale plasmonic resonator," IEEE-NANO, 81-84, 2007. Google Scholar
11. Anglin, K., D. C. Adams, T. Ribaudo, and D. Wasserman, "Toothed mid-infrared metal-insulator-metal waveguides," CLEO, CTuS4, 2011. Google Scholar
12. Bian, Y. and Q. Gong, "Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures," Opt. Comm., Vol. 313, 27-35, 2014.
doi:10.1016/j.optcom.2013.09.055 Google Scholar
13. Chen, Z. Q., J. Chen, Y. D. Li, D. Pan, W. Q. Lu, Z. Q. Hao, J. J. Xu, and Q. Sun, "Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides," IEEE Photonics Technology Letters, Vol. 24, 1366-1368, 2012.
doi:10.1109/LPT.2012.2202283 Google Scholar
14. Dolatabady, A. and N. Granpayeh, "All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators," J. O. S. K., Vol. 16, 432, 2012. Google Scholar
15. Wu, Y. D., "High transmission efficiency wavelength division multiplexer based on metal-insulator-metal plasmonic waveguides," OSA/IEEE J. of Lightwave Techn., Vol. 32, 4242, 2014.
doi:10.1109/JLT.2014.2378158 Google Scholar
16. Pramono, Y. H. and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater., Vol. 10, 209-222, 2001.
doi:10.1142/S0218863501000553 Google Scholar
17. Wu, Y. D., "New all-optical switch based on the spatial soliton repulsion," Opt. Express, Vol. 14, 4005, 2006.
doi:10.1364/OE.14.004005 Google Scholar
18. Wu, Y. D., M. L. Whang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 15, 9883, 2007.
doi:10.1364/OE.15.009883 Google Scholar
19. Radwell, N., C. McIntyre, A. J. Scroggie, G. L. Oppo, W. J. Firth, and T. Ackemann, "Switching spatial dissipative solitons in a VCSEL with frequency selective feedback," Eur. Phys. J. D, Vol. 59, 121, 2010.
doi:10.1140/epjd/e2010-00124-6 Google Scholar
20. Sarma, K., "Vector soliton switching in a fiber nonlinear directional coupler," Opt. Comm., Vol. 284, 186, 2011.
doi:10.1016/j.optcom.2010.09.001 Google Scholar
21. Hatami, M., R. Attarzadeh, and A. Gharaati, "Design of an ultra-fast all-optical dark soliton switch in a Three-core Nonlinear Directional Coupler (TNLDC) made of chalcogenide glasses," J. Nonlinear Optic. Phys. Mat., Vol. 21, 1250038, 2012.
doi:10.1142/S0218863512500385 Google Scholar
22. Karimi, S., M. Ebnali-Heidari, and F. Forootan, "Design and modelling of a 1 × n all-optical nonlinear Mach-Zehnder switch controlled by wavelength and input power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.
doi:10.2528/PIERM12100504 Google Scholar
23. Liu, W.-J. and M. Lei, "All-optical switches using solitons within nonlinear fibers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2288-2297, 2013.
doi:10.1080/09205071.2013.839961 Google Scholar
24. Zhong, H., B. Tian, Y. Jiang, M. Li, P. Wang, and W.-J. Liu, "All-optical soliton switching for the asymmetric fiber couplers," Eur. Phys. J. D, Vol. 67, 1, 2013. Google Scholar
25. Wu, Y. D., "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron., Vol. 11, 307, 2005. Google Scholar
26. Serak, S. V., N. V. Tabiryan, M. Peccianti, and G. Assanto, "Spatial soliton all-optical logic gates," IEEE Photon. Techn. Lett., Vol. 18, 1287, 2006.
doi:10.1109/LPT.2006.875318 Google Scholar
27. Wu, Y. D., T. T. Shih, and M. H. Chen, "New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 16, 248, 2008.
doi:10.1364/OE.16.000248 Google Scholar
28. Corbelli, M. M., F. Garzia, and R. Cusani, "All-optical EXOR for cryptographic application based on spatial solitons," J. of Info. Security, Vol. 4, 180, 2013.
doi:10.4236/jis.2013.43020 Google Scholar
29. Kubota, Y. and T. Odagaki, "Logic gates based on soliton transmission in the toda lattice," Adv. in Appl. Phys., Vol. 1, 29, 2013.
doi:10.12988/aap.2013.13003 Google Scholar
30. Bian, Y. and Q. Gong, "Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures," Opt. Comm., Vol. 313, 27, 2014. Google Scholar
31. Chen, Z., J. Chen, Y. Li, D. Pen, W. Lu, Z. Hao, J. Xu, and Q. Sun, "Simulation of nanoscale multifuntional interferometric logic gates based on coupled metal gap waveguides," IEEE Photon. Technol. Lett., Vol. 24, 1366, 2012. Google Scholar
32. Dolatabady, A. and N. Granpayeh, "All optical logic gate based on two dimensional plasmonic waveguides with nanodisk resonators," J. of the Opt. Soci. of Korea, Vol. 16, 432, 2012. Google Scholar
33. Wang, L., L. Yan, Y. Guo, K.Wen, W. Pan, and B. Luo, "Optical quasi logic based on polarization-dependent four-wave mixing in subwavelength metallic waveguides," Opt. Express, Vol. 21, 14442, 2013. Google Scholar
34. Nozhat, N. and N. Granpayeh, "All-optical logic gates based on nonlinear plasmonic ring resonators," Appl. Opt., Vol. 54, 7944, 2015. Google Scholar
35. Wen, J., J. Chen, K. Wang, B. Dai, Y. Hung, and D. Zhang, "Broadband plasmonic logic input sources constructed with dual square ring resonators and dual waveguides," IEEE Photon. J., Vol. 8, 4801209, 2016. Google Scholar
36. Yc, Y., Y. Xic, Y. Liu, S. Wang, J. Zhang, and Y. Liu, "Design of a compact logic device based on plasmonic-induced transparency," IEEE Photon. J., Vol. 29, 647, 2016. Google Scholar
37. Abdulnabi, S. H. and M. N. Abbas, "All-optical logic gates based on nanoring insulator-metalinsulator plasmonic waveguides at optical communications band," Journal of Nanophotonics, Vol. 13, No. 1, 16009, 2019. Google Scholar
38. Abdulnabi, S. H. and M. N. Abbas, "Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides," Photonics, Vol. 6, No. 1, 30, 2019. Google Scholar
39. Shekhar, P., A. Kumar, A. Ahmad, and M. Srivastava, "All optical OR/NOR logic gate using the micro-ring resonator based switching activity," International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2019. Google Scholar
40. Abbas, M. N. and S. H. Abdulnabi, "Plasmonic reversible logic gates," Journal of Nanophotonics, Vol. 14, No. 01, 1, 2019. Google Scholar
41. Noor, S. L., K. Dens, P. Reynaert, F. Catthoor, D. Lin, P. V. Dorpe, and A. Naeemi, "Modeling and optimization of plasmonic detectors for beyond-CMOS plasmonic majority logic gates," OSA/IEEE J. of Lightwave Technol., Vol. 38, 5092, 2020. Google Scholar
42. Fakhruldeen, H. F. and T. S. Mansour, "Design and simulation of plasmonic NOT gate based on insulator-metal-insulator (IMI) waveguides," Advanced Electromagnetics, Vol. 9, 91, 2020. Google Scholar
43. Sederberg, S., V. Van, and A. Y. Elezzabi, "Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform," Appl. Phys. Lett., Vol. 96, 121101, 2010. Google Scholar
44. Choo, H., M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, "Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper," Nat. Photonics, Vol. 6, 838-844, 2012. Google Scholar
45. Kwon, M. S., J. S. Shin, S. Y. Shin, and W. G. Lee, "Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal," Opt. Express, Vol. 20, 21875-21887, 2012. Google Scholar
46. Sullivan, D., D. Borup, and O. Gandhi, "Use of the finite-difference time-domain method in calculating EM absorption in human tissues," IEEE Trans. Biomed. Eng., Vol. 34, 148, 1987. Google Scholar
47. Adhidjaja, J. and G. Horhmann, "A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body," Geophysics J. Int., Vol. 98, 233, 1989. Google Scholar
48. Piket-May, M. and A. Taflove, "Electrodynamics of visible-light interactions with the vertebrate retinal rod," Opt. Lett., Vol. 18, 568, 1993. Google Scholar
49. Caorsi, S., A. Massa, and M. Pastorino, "Computation of electromagnetic scattering by nonlinear bounded dielectric objects: A FDTD approach," Microwave Opt. Technol. Lett., Vol. 7, 788, 1994. Google Scholar
50. Tao, J., Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material," Plasmonics, Vol. 6, 753, 2011. Google Scholar