1. Siegel, P. H., "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 910-928, 2002.
doi:10.1109/22.989974 Google Scholar
2. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, No. 2, 97-105, 2007.
doi:10.1038/nphoton.2007.3 Google Scholar
3. Horiuchi, N., "Endless applications," Nature Photonics, Vol. 4, No. 3, 140-140, 2010.
doi:10.1038/nphoton.2010.16 Google Scholar
4. Akyildiz, I. F., J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications," Physical Communication, Vol. 12, 16-32, 2014.
doi:10.1016/j.phycom.2014.01.006 Google Scholar
5. Hafez, H. A., X. Chai, A. Ibrahim, et al. "Intense terahertz radiation and their applications," Journal of Optics, Vol. 18, No. 9, 093004, 2016.
doi:10.1088/2040-8978/18/9/093004 Google Scholar
6. Wu, X. L., S. J. Xiong, Z. Liu, et al. "Green light stimulates terahertz emission from mesocrystal microspheres," Nature Nanotechnology, Vol. 6, No. 2, 103-106, 2011.
doi:10.1038/nnano.2010.264 Google Scholar
7. Carr, G. L., M. C. Martin, W. R. McKinney, et al. "High-power terahertz radiation from relativistic electrons," Nature, Vol. 420, No. 6912, 153-156, 2002.
doi:10.1038/nature01175 Google Scholar
8. Gong, Y., Q. Zhou, M. Hu, et al. "Some advances in theory and experiment of high-frequency vacuum electron devices in China," IEEE Transactions on Plasma Science, Vol. 47, No. 5, 1971-1990, 2019.
doi:10.1109/TPS.2019.2904124 Google Scholar
9. Cherenkov, P. A., "Visible emission of clean liquids by action of γ radiation," Dokl. Akad. Nauk SSSR, Vol. 2, No. 8, 451-454, 1934. Google Scholar
10. Bolotovskii, B. M., "Vavilov-Cherenkov radiation: Its discovery and application," Physics-Uspekhi, Vol. 179, No. 11, 1161-1173, 2009. Google Scholar
11. Pan, P., Y. Hu, Y. Tang, et al. "Development of 220 GHz and 340 GHz TWTs," 2016 IEEE 9th UK-Europe-China Workshopon Millimetre Waves and Terahertz Technologies (UCMMT), IEEE, 2016. Google Scholar
12. Hou, Y., Y. Gong, J. Xu, et al. "A novel ridge-vane-loaded folded-waveguide slow-wave structure for 0.22-THz traveling-wave tube," IEEE Transactions on Electron Devices, Vol. 60, No. 3, 1228-1235, 2013.
doi:10.1109/TED.2013.2238941 Google Scholar
13. Pacey, T. H., Y. Saveliev, A. Healy, et al. "Continuously tunable narrow-band terahertz generation with a dielectric lined waveguide driven by short electron bunches," Physical Review Accelerators and Beams, Vol. 22, No. 9, 091302, 2019.
doi:10.1103/PhysRevAccelBeams.22.091302 Google Scholar
14. Cook, A. M., R. Tikhoplav, S. Y. Tochitsky, et al. "Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide," Physical Review Letters, Vol. 103, No. 9, 095003, 2009.
doi:10.1103/PhysRevLett.103.095003 Google Scholar
15. Antipov, S., C. Jing, M. Fedurin, et al. "Experimental observation of energy modulation in electron beams passing through terahertz dielectric wakefield structures," Physical Review Letters, Vol. 108, No. 14, 144801, 2012.
doi:10.1103/PhysRevLett.108.144801 Google Scholar
16. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer Science & Business Media, 2007.
doi:10.1007/0-387-37825-1
17. Liu, S., P. Zhang, W. Liu, et al. "Surface polariton Cherenkov light radiation source," Physical Review Letters, Vol. 109, No. 15, 153902, 2012.
doi:10.1103/PhysRevLett.109.153902 Google Scholar
18. Burlak, G., C. Cuevas-Arteaga, G. Medina-Angel, et al. "Plasmon-polariton oscillations in three-dimensional disordered nanotubes excited by a moving charge," Journal of Applied Physics, Vol. 126, No. 1, 013101, 2019.
doi:10.1063/1.5098019 Google Scholar
19. Liu, F., L. Xiao, Y. Ye, et al. "Integrated Cherenkov radiation emitter eliminating the electron velocity threshold," Nature Photonics, Vol. 11, No. 5, 289-292, 2017.
doi:10.1038/nphoton.2017.45 Google Scholar
20. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.
doi:10.2528/PIER12071911 Google Scholar
21. Shi, X., X. Lin, F. Gao, et al. "Caustic graphene plasmons with Kelvin angle," Physical Review B, Vol. 92, No. 8, 081404.1-081404.5, 2015. Google Scholar
22. Liu, S., C. Zhang, M. Hu, et al. "Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam," Applied Physics Letters, Vol. 104, No. 20, 109, 2014. Google Scholar
23. Gong, S., T. Zhao, M. Sanderson, et al. "Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime," Applied Physics Letters, Vol. 106, No. 22, 223107, 2015.
doi:10.1063/1.4922261 Google Scholar
24. Zhao, T., S. Gong, M. Hu, et al. "Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by cyclotron electron beam," Scientific Reports, Vol. 5, 16059, 2015.
doi:10.1038/srep16059 Google Scholar
25. Zhao, T., M. Hu, R. Zhong, et al. "Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam," Applied Physics Letters, Vol. 110, No. 23, 666-200, 2017. Google Scholar
26. Zhao, T., M. Hu, R. Zhong, et al. "Terahertz generation from Dirac semimetals surface plasmon polaritons excited by an electron beam," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), 2018. Google Scholar
27. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999 Google Scholar
28. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S97, 2005.
doi:10.1088/1464-4258/7/2/013 Google Scholar
29. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005.
doi:10.1126/science.1109043 Google Scholar
30. Gao, Z., L. Wu, F. Gao, et al. "Spoof plasmonics: From metamaterial concept to topological description," Advanced Materials, Vol. 30, No. 31, 1706683, 2018.
doi:10.1002/adma.201706683 Google Scholar
31. Liu, L., L. Ran, H. Guo, X. Chen, and Z. Li, "Broadband plasmonic circuitry enabled by channel domino spoof plasmons," Progress In Electromagnetics Research, Vol. 164, 109-118, 2019.
doi:10.2528/PIER18120502 Google Scholar
32. Yu, N., Q. J. Wang, M. A. Kats, et al. "Designer spoof surface plasmon structures collimate terahertz laser beams," Nature Materials, Vol. 9, No. 9, 730-735, 2010.
doi:10.1038/nmat2822 Google Scholar
33. Cakmakyapan, S., A. E. Serebryannikov, H. Caglayan, et al. "Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating," Optics Express, Vol. 20, No. 24, 26636-26648, 2012.
doi:10.1364/OE.20.026636 Google Scholar
34. Gao, X. and T. J. Cui, "Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications," Nanotechnology Reviews, Vol. 4, No. 3, 239-258, 2015.
doi:10.1515/ntrev-2014-0032 Google Scholar
35. Geng, Y. F., Z. N. Wang, Y. G. Ma, et al. "Topological surface plasmon polaritons," Acta PhysicaSinica, Vol. 68, No. 22, 224101, 2019. Google Scholar
36. Zhu, J. F., C. H. Du, L. Y. Bao, et al. "Regenerated amplification of terahertz spoof surface plasmon radiation," New Journal of Physics, Vol. 21, No. 3, 033021, 2019.
doi:10.1088/1367-2630/ab0aa4 Google Scholar
37. Liu, Y. Q., C. H. Du, and P. K. Liu, "Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3288-3294, 2016.
doi:10.1109/TPS.2016.2627576 Google Scholar
38. Liu, Y. Q., L. B. Kong, C. H. Du, et al. "A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating," IEEE Transactions on Plasma Science, Vol. 44, No. 6, 930-937, 2016.
doi:10.1109/TPS.2016.2556319 Google Scholar
39. Zhu, J. F., C. H. Du, T. J. Huang, et al. "Free-electron-driven beam-scanning terahertz radiation," Optics Express, Vol. 27, No. 18, 26192-26202, 2019.
doi:10.1364/OE.27.026192 Google Scholar
40. Zhu, J. F., C. H. Du, F. H. Li, et al. "Free-electron-driven multi-frequency terahertz radiation on a super-grating structure," IEEE Access, Vol. 7, 181184-181190, 2019.
doi:10.1109/ACCESS.2019.2938270 Google Scholar
41. Zhou, Y., Y. Zhang, G. Jiang, et al. "Coherent terahertz radiation generated from a square-shaped free-electron beam passing through multiple stacked layers with sub-wavelength holes," Journal of Physics D: Applied Physics, Vol. 48, No. 34, 345102, 2015.
doi:10.1088/0022-3727/48/34/345102 Google Scholar
42. Liu, S., M. Hu, Y. Zhang, et al. "Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam," Physical Review E, Vol. 80, No. 3, 036602, 2009.
doi:10.1103/PhysRevE.80.036602 Google Scholar
43. Kong, J. A., Electromagnetic Waves Theory, EMW Publishing, 2008.