Vol. 169
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-11-25
Designer Surface Plasmons Enable Terahertz Cherenkov Radiation (Invited)
By
Progress In Electromagnetics Research, Vol. 169, 25-32, 2020
Abstract
Cherenkov radiation (CR) is a promising method to generate high-power terahertz (THz) electromagnetic (EM) waves, which are highly desired in numerous practical applications. For the purpose of economy energy, naturally occurred materials with flat surface (e.g. graphene), which can support highly-confined surface-plasmon-polariton (SPP) modes, have been proposed to construct high-efficiency terahertz CR source; however, these emerging materials cannot be easily fabricated nor flexibly designed. Here, we propose a designer-SPP metamaterial scheme to pursue terahertz CR. The metamaterial is a structure-decorated metal surface, which is compatible with planar fabrication, and can support SPP-like EM modes in terahertz frequencies, also named as designer SPP. Due to the structure dependence of designer SPP, its dispersions can be flexibly designed by changing the structure geometries as well as choosing proper dielectric medias. Numerical results clearly demonstrated this scheme. Our proposal may promise future high-efficiency and intense THz source with design flexibilities.
Citation
Jie Zhang, Xiaofeng Hu, Hongsheng Chen, and Fei Gao, "Designer Surface Plasmons Enable Terahertz Cherenkov Radiation (Invited)," Progress In Electromagnetics Research, Vol. 169, 25-32, 2020.
doi:10.2528/PIER20102708
References

1. Siegel, P. H., "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 910-928, 2002.
doi:10.1109/22.989974        Google Scholar

2. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, No. 2, 97-105, 2007.
doi:10.1038/nphoton.2007.3        Google Scholar

3. Horiuchi, N., "Endless applications," Nature Photonics, Vol. 4, No. 3, 140-140, 2010.
doi:10.1038/nphoton.2010.16        Google Scholar

4. Akyildiz, I. F., J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications," Physical Communication, Vol. 12, 16-32, 2014.
doi:10.1016/j.phycom.2014.01.006        Google Scholar

5. Hafez, H. A., X. Chai, A. Ibrahim, et al. "Intense terahertz radiation and their applications," Journal of Optics, Vol. 18, No. 9, 093004, 2016.
doi:10.1088/2040-8978/18/9/093004        Google Scholar

6. Wu, X. L., S. J. Xiong, Z. Liu, et al. "Green light stimulates terahertz emission from mesocrystal microspheres," Nature Nanotechnology, Vol. 6, No. 2, 103-106, 2011.
doi:10.1038/nnano.2010.264        Google Scholar

7. Carr, G. L., M. C. Martin, W. R. McKinney, et al. "High-power terahertz radiation from relativistic electrons," Nature, Vol. 420, No. 6912, 153-156, 2002.
doi:10.1038/nature01175        Google Scholar

8. Gong, Y., Q. Zhou, M. Hu, et al. "Some advances in theory and experiment of high-frequency vacuum electron devices in China," IEEE Transactions on Plasma Science, Vol. 47, No. 5, 1971-1990, 2019.
doi:10.1109/TPS.2019.2904124        Google Scholar

9. Cherenkov, P. A., "Visible emission of clean liquids by action of γ radiation," Dokl. Akad. Nauk SSSR, Vol. 2, No. 8, 451-454, 1934.        Google Scholar

10. Bolotovskii, B. M., "Vavilov-Cherenkov radiation: Its discovery and application," Physics-Uspekhi, Vol. 179, No. 11, 1161-1173, 2009.        Google Scholar

11. Pan, P., Y. Hu, Y. Tang, et al. "Development of 220 GHz and 340 GHz TWTs," 2016 IEEE 9th UK-Europe-China Workshopon Millimetre Waves and Terahertz Technologies (UCMMT), IEEE, 2016.        Google Scholar

12. Hou, Y., Y. Gong, J. Xu, et al. "A novel ridge-vane-loaded folded-waveguide slow-wave structure for 0.22-THz traveling-wave tube," IEEE Transactions on Electron Devices, Vol. 60, No. 3, 1228-1235, 2013.
doi:10.1109/TED.2013.2238941        Google Scholar

13. Pacey, T. H., Y. Saveliev, A. Healy, et al. "Continuously tunable narrow-band terahertz generation with a dielectric lined waveguide driven by short electron bunches," Physical Review Accelerators and Beams, Vol. 22, No. 9, 091302, 2019.
doi:10.1103/PhysRevAccelBeams.22.091302        Google Scholar

14. Cook, A. M., R. Tikhoplav, S. Y. Tochitsky, et al. "Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide," Physical Review Letters, Vol. 103, No. 9, 095003, 2009.
doi:10.1103/PhysRevLett.103.095003        Google Scholar

15. Antipov, S., C. Jing, M. Fedurin, et al. "Experimental observation of energy modulation in electron beams passing through terahertz dielectric wakefield structures," Physical Review Letters, Vol. 108, No. 14, 144801, 2012.
doi:10.1103/PhysRevLett.108.144801        Google Scholar

16. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer Science & Business Media, 2007.
doi:10.1007/0-387-37825-1

17. Liu, S., P. Zhang, W. Liu, et al. "Surface polariton Cherenkov light radiation source," Physical Review Letters, Vol. 109, No. 15, 153902, 2012.
doi:10.1103/PhysRevLett.109.153902        Google Scholar

18. Burlak, G., C. Cuevas-Arteaga, G. Medina-Angel, et al. "Plasmon-polariton oscillations in three-dimensional disordered nanotubes excited by a moving charge," Journal of Applied Physics, Vol. 126, No. 1, 013101, 2019.
doi:10.1063/1.5098019        Google Scholar

19. Liu, F., L. Xiao, Y. Ye, et al. "Integrated Cherenkov radiation emitter eliminating the electron velocity threshold," Nature Photonics, Vol. 11, No. 5, 289-292, 2017.
doi:10.1038/nphoton.2017.45        Google Scholar

20. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.
doi:10.2528/PIER12071911        Google Scholar

21. Shi, X., X. Lin, F. Gao, et al. "Caustic graphene plasmons with Kelvin angle," Physical Review B, Vol. 92, No. 8, 081404.1-081404.5, 2015.        Google Scholar

22. Liu, S., C. Zhang, M. Hu, et al. "Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam," Applied Physics Letters, Vol. 104, No. 20, 109, 2014.        Google Scholar

23. Gong, S., T. Zhao, M. Sanderson, et al. "Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime," Applied Physics Letters, Vol. 106, No. 22, 223107, 2015.
doi:10.1063/1.4922261        Google Scholar

24. Zhao, T., S. Gong, M. Hu, et al. "Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by cyclotron electron beam," Scientific Reports, Vol. 5, 16059, 2015.
doi:10.1038/srep16059        Google Scholar

25. Zhao, T., M. Hu, R. Zhong, et al. "Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam," Applied Physics Letters, Vol. 110, No. 23, 666-200, 2017.        Google Scholar

26. Zhao, T., M. Hu, R. Zhong, et al. "Terahertz generation from Dirac semimetals surface plasmon polaritons excited by an electron beam," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), 2018.        Google Scholar

27. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999        Google Scholar

28. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S97, 2005.
doi:10.1088/1464-4258/7/2/013        Google Scholar

29. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005.
doi:10.1126/science.1109043        Google Scholar

30. Gao, Z., L. Wu, F. Gao, et al. "Spoof plasmonics: From metamaterial concept to topological description," Advanced Materials, Vol. 30, No. 31, 1706683, 2018.
doi:10.1002/adma.201706683        Google Scholar

31. Liu, L., L. Ran, H. Guo, X. Chen, and Z. Li, "Broadband plasmonic circuitry enabled by channel domino spoof plasmons," Progress In Electromagnetics Research, Vol. 164, 109-118, 2019.
doi:10.2528/PIER18120502        Google Scholar

32. Yu, N., Q. J. Wang, M. A. Kats, et al. "Designer spoof surface plasmon structures collimate terahertz laser beams," Nature Materials, Vol. 9, No. 9, 730-735, 2010.
doi:10.1038/nmat2822        Google Scholar

33. Cakmakyapan, S., A. E. Serebryannikov, H. Caglayan, et al. "Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating," Optics Express, Vol. 20, No. 24, 26636-26648, 2012.
doi:10.1364/OE.20.026636        Google Scholar

34. Gao, X. and T. J. Cui, "Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications," Nanotechnology Reviews, Vol. 4, No. 3, 239-258, 2015.
doi:10.1515/ntrev-2014-0032        Google Scholar

35. Geng, Y. F., Z. N. Wang, Y. G. Ma, et al. "Topological surface plasmon polaritons," Acta PhysicaSinica, Vol. 68, No. 22, 224101, 2019.        Google Scholar

36. Zhu, J. F., C. H. Du, L. Y. Bao, et al. "Regenerated amplification of terahertz spoof surface plasmon radiation," New Journal of Physics, Vol. 21, No. 3, 033021, 2019.
doi:10.1088/1367-2630/ab0aa4        Google Scholar

37. Liu, Y. Q., C. H. Du, and P. K. Liu, "Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3288-3294, 2016.
doi:10.1109/TPS.2016.2627576        Google Scholar

38. Liu, Y. Q., L. B. Kong, C. H. Du, et al. "A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating," IEEE Transactions on Plasma Science, Vol. 44, No. 6, 930-937, 2016.
doi:10.1109/TPS.2016.2556319        Google Scholar

39. Zhu, J. F., C. H. Du, T. J. Huang, et al. "Free-electron-driven beam-scanning terahertz radiation," Optics Express, Vol. 27, No. 18, 26192-26202, 2019.
doi:10.1364/OE.27.026192        Google Scholar

40. Zhu, J. F., C. H. Du, F. H. Li, et al. "Free-electron-driven multi-frequency terahertz radiation on a super-grating structure," IEEE Access, Vol. 7, 181184-181190, 2019.
doi:10.1109/ACCESS.2019.2938270        Google Scholar

41. Zhou, Y., Y. Zhang, G. Jiang, et al. "Coherent terahertz radiation generated from a square-shaped free-electron beam passing through multiple stacked layers with sub-wavelength holes," Journal of Physics D: Applied Physics, Vol. 48, No. 34, 345102, 2015.
doi:10.1088/0022-3727/48/34/345102        Google Scholar

42. Liu, S., M. Hu, Y. Zhang, et al. "Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam," Physical Review E, Vol. 80, No. 3, 036602, 2009.
doi:10.1103/PhysRevE.80.036602        Google Scholar

43. Kong, J. A., Electromagnetic Waves Theory, EMW Publishing, 2008.